第28課冪函數(shù)(修改稿)_第1頁
第28課冪函數(shù)(修改稿)_第2頁
第28課冪函數(shù)(修改稿)_第3頁
第28課冪函數(shù)(修改稿)_第4頁
第28課冪函數(shù)(修改稿)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第28 課冪函數(shù)一教學(xué)目標(biāo):1知識技能( 1)了解冪函數(shù)的概念;( 2)通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行初步的應(yīng)用。( 3)學(xué)會研究函數(shù)圖象和性質(zhì)的一般方法。2過程與方法類比研究指數(shù)函數(shù)、對數(shù)函數(shù)的過程與方法,掌握冪函數(shù)的圖象和性質(zhì)。3情感、態(tài)度、價值觀( 1)進(jìn)一步滲透數(shù)形結(jié)合與類比的思想方法;( 2)體會冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對稱性,感受數(shù)學(xué)美。二重點(diǎn)、難點(diǎn)重點(diǎn):從五個具體的冪函數(shù)中認(rèn)識冪函數(shù)的概念和性質(zhì)。難點(diǎn):從冪函數(shù)的圖象中概括其性質(zhì)。三學(xué)法與教具( 1)學(xué)法:通過類比、思考、交流、討論,理解冪函數(shù)的定義和性質(zhì)。( 2)教學(xué)用具:多媒體四教學(xué)過程:(一)創(chuàng)設(shè)情境(課本

2、引例)經(jīng)調(diào)查,一種商品的價格和需求的關(guān)系如下表所示。價格 /元0.60.650.70.750.80.850.9需求量 /t139.6135.4131.6128.2125.1122.2119.5根據(jù)此表,我們可以得到價格x 與需求量 y 之間的近似關(guān)系式:y=114.8746x-0.38.這個關(guān)系式與函數(shù)y= x-0.38 是相關(guān)聯(lián)的。我們還學(xué)習(xí)過下列函數(shù):yx ; yx2 ; y1 ; yx 。x問題 1:以上函數(shù)分別叫做什么函數(shù)?問題 2:它們的解析式在結(jié)構(gòu)上有何共同特征?答:上述函數(shù)的解析式都可以寫成y x的形式,其中 x 是自變量,.是常數(shù) 。問題 3:它們是指數(shù)函數(shù)嗎?它們與指數(shù)函數(shù)有

3、何聯(lián)系和區(qū)別?答:指數(shù)函數(shù) y ax 和函數(shù) yx 都是冪的形式。但在指數(shù)函數(shù) ya x 中,底數(shù)是常數(shù),指數(shù)是自變量;在函數(shù)yx中,底數(shù)是自變量,而指數(shù)是常數(shù)。(二)探求新知1 冪函數(shù)的定義一般地,形如yx ( xR)的函數(shù)稱為冪函數(shù),其中x 是自變量,是常數(shù) ;11 y x2 , y x3, yx 4等都是冪函數(shù),在中學(xué)里我們只研究為有理數(shù)的情形;冪函數(shù)與一、二次函數(shù),正、反比例函數(shù)及指、對數(shù)函數(shù)一樣,都是基本初等函數(shù).2 冪函數(shù)的性質(zhì)引例 :說出下列函數(shù)的定義域,并指出它的奇偶性和單調(diào)性: yx1 yx 2函數(shù)yx定義域奇偶性在第象限單調(diào)性定點(diǎn)函數(shù)yx定義域R奇偶性奇在第象遞增限單調(diào)性

4、y x2 y x 1yx2yx3yx2yx3RR偶奇遞增遞增 y x3 yx 21y x 1y x 2y x21y x 1y x 2y x2x | x 0x | x 0x | x 0非奇非偶奇偶遞增遞減遞減0,00,00,00,0定點(diǎn)1,11,11,11,11,11,1思考 1:根據(jù)以上函數(shù)的性質(zhì),在同一坐標(biāo)系內(nèi)作出它們的圖象。y x2y y x3y x1yx 22yx 1y xOx思考 2:根據(jù)圖象,說出以上函數(shù)的值域。思考 3:根據(jù)圖象,歸納函數(shù)的共同特征。思考 4:根據(jù)圖象,歸納函數(shù)的共同特征。歸納冪函數(shù)的性質(zhì):當(dāng)0時:)圖象都過0,0 , 1,1 點(diǎn)。)在第一象限內(nèi)圖象逐漸上升,都是增

5、函數(shù),且越大,上升速度越快。)當(dāng)1時,圖象下凸;當(dāng) 01時,圖象上凸。 當(dāng)0 時:)圖象都過1,1 點(diǎn)。)在第一象限內(nèi)圖象逐漸下降,都是減函數(shù),且越小,下降速度越快。思考 1:如何判斷一個冪函數(shù)在其他象限內(nèi)是否有圖象?思考 2:如何作出一個冪函數(shù)在其他象限內(nèi)是否有圖象?(三)學(xué)以致用例 1 寫出下列函數(shù)的定義域和奇偶性( 1) y x41( 3) y x 3( 4) y x 2( 2) y x 4例 2 證明冪函數(shù) f ( x)x在 0, 上是增函數(shù)證:任取 x1, x20,), 且 x1 x2 則f ( x1 )f ( x 2 )x1x2( x1x2 )( x1x2 )=x1x2x 1x2=

6、x 1x2因 x1x2 0, x 1x2 0所以 f ( x1)f ( x2 ) ,即 f (x)x在0, 上是增函數(shù) .例 3比較下列各組中兩個值的大?。?13355(1) 26 ,36;( 2) 3.144 與4;(3) (0.88) 3 與 (0.89) 3 332333思考: .比較下列各數(shù)的大小:(1) 1.14 ,1.44 ,1.13 ; (2)0.164 ,0.52 ,6.25 8.例 4已知函數(shù) fxm22mxm2m 1 .則當(dāng) m 為何值時,f x是( 1)正比例函數(shù); ( 2)反比例函數(shù); ( 3)冪函數(shù)?2例 5已知函數(shù)畫出 yx 3 的大致圖象。2求其定義域、值域;判斷

7、奇偶性和單調(diào)性;畫出y x3 的大致圖象。(四)鞏固提高1已知冪函數(shù)fx 的圖象經(jīng)過點(diǎn)2,2,則 f4 的值等于()2y11A. 16B.D. 2C.C11622已知冪函數(shù)yxa 、 yxb 、y xc 、yxdC2在第一象限內(nèi)的圖象分別是C1、C2、 C3、C4,1C3則 a 、 b 、 c 、 d 的大小關(guān)系是 _.C4O13下列冪函數(shù)中,定義域?yàn)椋?, )的是()2323A. y x 3B. y x 2C. y x 3D. y x 24若 a<0,則下列不等式正確的是()A. 2a2 a0.2a ; B. 0.2a2 a2a ; C. 2 a0.2a2a ;D. 2a0.2a5關(guān)于冪函數(shù) yx,下列結(jié)論正確的是()A. 圖象都通過( 0, 0),( 1, 1)兩點(diǎn); B.當(dāng)0 時,冪函數(shù)為增函數(shù);C.當(dāng)0 時,圖象是一條直線;D.冪函數(shù)的圖象不可能出現(xiàn)在第四象限。qpx2a6若冪函數(shù) y x ( p 、 qZ 且 p 、 q 互質(zhì))的圖象過點(diǎn)( 1, 1),則(A p 為奇數(shù), q 為偶數(shù), pq0B. q 為奇數(shù), p 為偶數(shù), p q0C. p 為奇數(shù), q 為偶數(shù), pq0D.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論