計算幾何常用算法+直線拐點判斷++線段相交判斷_第1頁
計算幾何常用算法+直線拐點判斷++線段相交判斷_第2頁
計算幾何常用算法+直線拐點判斷++線段相交判斷_第3頁
計算幾何常用算法+直線拐點判斷++線段相交判斷_第4頁
計算幾何常用算法+直線拐點判斷++線段相交判斷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、-作者xxxx-日期xxxx計算幾何常用算法+直線拐點判斷+線段相交判斷【精品文檔】計算幾何常用算法一、引言計算機的出現(xiàn)使得很多原本十分繁瑣的工作得以大幅度簡化,但是也有一些在人們直觀看來很容易的問題卻需要拿出一套并不簡單的通用解決方案,比如幾何問題。 作為計算機科學的一個分支,計算幾何主要研究解決幾何問題的算法。在現(xiàn)代工程和數(shù)學領(lǐng)域,計算幾何在圖形學、機器人技術(shù)、超大規(guī)模集成電路設(shè)計和統(tǒng)計等諸 多領(lǐng)域有著十分重要的應(yīng)用。在本文中,我們將對計算幾何常用的基本算法做一個全面的介紹,希望對您了解并應(yīng)用計算幾何的知識解決問題起到幫助。二、目錄本文整理的計算幾何基本概念和常用算法包括如下內(nèi)容:矢量的概

2、念矢量加減法矢量叉積折線段的拐向判斷判斷點是否在線段上判斷兩線段是否相交判斷線段和直線是否相交判斷矩形是否包含點判斷線段、折線、多邊形是否在矩形中判斷矩形是否在矩形中判斷圓是否在矩形中判斷點是否在多邊形中判斷線段是否在多邊形內(nèi)判斷折線是否在多邊形內(nèi)判斷多邊形是否在多邊形內(nèi)判斷矩形是否在多邊形內(nèi)判斷圓是否在多邊形內(nèi)判斷點是否在圓內(nèi)判斷線段、折線、矩形、多邊形是否在圓內(nèi)判斷圓是否在圓內(nèi)計算點到線段的最近點計算點到折線、矩形、多邊形的最近點計算點到圓的最近距離及交點坐標計算兩條共線的線段的交點計算線段或直線與線段的交點求線段或直線與折線、矩形、多邊形的交點求線段或直線與圓的交點凸包的概念凸包的求法三

3、、算法介紹矢量的概念:如果一條線段的端點是有次序之分的,我們把這種線段成為有向線段(directed segment)。如果有向線段p1p2的起點p1在坐標原點,我們可以把它稱為矢量(vector)p2。矢量加減法:設(shè)二維矢量P = ( x1,y1 ) ,Q = ( x2 , y2 ) ,則矢量加法定義為: P + Q = ( x1 + x2 , y1 + y2 ),同樣的,矢量減法定義為: P - Q = ( x1 - x2 , y1 - y2 )。顯然有性質(zhì) P + Q = Q + P , P - Q = - ( Q - P )。矢量叉積:計算矢量叉積是與直線和線段相關(guān)算法的核心部分。設(shè)矢

4、量P = (x1,y1) ,Q = (x2,y2),則矢量叉積定義為由(0,0)、p1、p2和p1+p2所組成的平行四邊形的帶符號的面積,即:P × Q = x1*y2 - x2*y1,其結(jié)果是一個標量。顯然有性質(zhì) P × Q = - ( Q × P ) 和 P × ( - Q ) = - ( P × Q )。一般在不加說明的情況下,本文下述算法中所有的點都看作矢量,兩點的加減法就是矢量相加減,而點的乘法則看作矢量叉積。叉積的一個非常重要性質(zhì)是可以通過它的符號判斷兩矢量相互之間的順逆時針關(guān)系:若 P × Q > 0 , 則P在Q

5、的順時針方向。 若 P × Q < 0 , 則P在Q的逆時針方向。 若 P × Q = 0 , 則P與Q共線,但可能同向也可能反向。折線段的拐向判斷:折線段的拐向判斷方法可以直接由矢量叉積的性質(zhì)推出。對于有公共端點的線段p0p1和p1p2,通過計算(p2 - p0) × (p1 - p0)的符號便可以確定折線段的拐向:若(p2 - p0) × (p1 - p0) > 0,則p0p1在p1點拐向右側(cè)后得到p1p2。若(p2 - p0) × (p1 - p0) < 0,則p0p1在p1點拐向左側(cè)后得到p1p2。若(p2 - p0)

6、 × (p1 - p0) = 0,則p0、p1、p2三點共線。具體情況可參照下圖:判斷點是否在線段上:設(shè)點為Q,線段為P1P2 ,判斷點Q在該線段上的依據(jù)是:( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2為對角頂點的矩形內(nèi)。前者保證Q點在直線P1P2上,后者是保證Q點不在線段P1P2的延長線或反向延長線上,對于這一步驟的判斷可以用以下過 程實現(xiàn):ON-SEGMENT(pi,pj,pk)if min(xi,xj)<=xk<=max(xi,xj) and min(yi,yj)<=yk<=max(yi,yj)then r

7、eturn true;else return false;特別要注意的是,由于需要考慮水平線段和垂直線段兩種特殊情況,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)<=yk<=max(yi,yj)兩個條件必須同時滿足才能返回真值。判斷兩線段是否相交:我們分兩步確定兩條線段是否相交:(1)快速排斥試驗設(shè)以線段 P1P2 為對角線的矩形為R, 設(shè)以線段 Q1Q2 為對角線的矩形為T,如果R和T不相交,顯然兩線段不會相交。(2)跨立試驗 如果兩線段相交,則兩線段必然相互跨立對方。若P1P2跨立Q1Q2 ,則矢量 ( P1 - Q1 ) 和( P2

8、- Q1 )位于矢量( Q2 - Q1 ) 的兩側(cè),即( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0。上式可改寫成( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0。當 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 時,說明 ( P1 - Q1 ) 和 ( Q2 - Q1 )共線,但是因為已經(jīng)通過快速排斥試驗,所以 P1 一定在線段 Q1Q2上;同理,( Q2 - Q1 ) ×(

9、P2 - Q1 ) = 0 說明 P2 一定在線段 Q1Q2上。所以判斷P1P2跨立Q1Q2的依據(jù)是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。同理判斷Q1Q2跨立P1P2的依據(jù)是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。具體情況如下圖所示:在相同的原理下,對此算法的具體的實現(xiàn)細節(jié)可能會與此有所不同,除了這種過程外,大家也可以參考算法導論上的實現(xiàn)。判斷線段和直線是否相交:有了上面的基礎(chǔ),這個

10、算法就很容易了。如果線段P1P2和直線Q1Q2相交,則P1P2跨立Q1Q2,即:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。判斷矩形是否包含點:只要判斷該點的橫坐標和縱坐標是否夾在矩形的左右邊和上下邊之間。判斷線段、折線、多邊形是否在矩形中:因為矩形是個凸集,所以只要判斷所有端點是否都在矩形中就可以了。判斷矩形是否在矩形中:只要比較左右邊界和上下邊界就可以了。判斷圓是否在矩形中:很容易證明,圓在矩形中的充要條件是:圓心在矩形中且圓的半徑小于等于圓心到矩形四邊的距離的最小值。判斷點是否在多邊形中:

11、判斷點P是否在多邊形中是計算幾何中一個非?;镜鞘种匾乃惴āR渣cP為端點,向左方作射 線L,由于多邊形是有界的,所以射線L的左端一定在多邊形外,考慮沿著L從無窮遠處開始自左向右移動,遇到和多邊形的第一個交點的時候,進入到了多邊形的 內(nèi)部,遇到第二個交點的時候,離開了多邊形,所以很容易看出當L和多邊形的交點數(shù)目C是奇數(shù)的時候,P在多邊形內(nèi),是偶數(shù)的話P在多邊形外。但是有些特殊情況要加以考慮。如圖下圖(a)(b)(c)(d)所示。在圖(a)中,L和多邊形的頂點相交,這時候交點只能計算一個;在圖(b)中,L和 多邊形頂點的交點不應(yīng)被計算;在圖(c)和(d) 中,L和多邊形的一條邊重合,這條邊應(yīng)

12、該被忽略不計。如果L和多邊形的一條邊重合,這條邊應(yīng)該被忽略不計。為了統(tǒng)一起見,我們在計算射線L和多邊形的交點的時候,1。對于多邊形的水平邊不作考慮;2。對于多邊形的頂點和L相交的情況,如果該頂點是其所屬的邊上 縱坐標較大的頂點,則計數(shù),否則忽略;3。對于P在多邊形邊上的情形,直接可判斷P屬于多邊行。由此得出算法的偽代碼如下: count 0; 以P為端點,作從右向左的射線L; for 多邊形的每條邊s do if P在邊s上 then return true; if s不是水平的 then if s的一個端點在L上 if 該端點是s兩端點中縱坐標較大的端點 then count count+1

13、 else if s和L相交 then count count+1; if count mod 2 = 1 then return true; else return false; - - 作者:b_wind - 發(fā)布時間:2004-06-12 23:01:08 - 其中做射線L的方法是:設(shè)P'的縱坐標和P相同,橫坐標為正無窮大(很大的一個正數(shù)),則P和P'就確定了射線L。 判斷點是否在多邊形中的這個算法的時間復雜度為O(n)。另外還有一種算法是用帶符號的三角形面積之和與多邊形面積進行比較,這種算法由于使用浮點數(shù)運算所以會帶來一定誤差,不推薦大家使用。 判斷線段是否在多邊形內(nèi):

14、 線 段在多邊形內(nèi)的一個必要條件是線段的兩個端點都在多邊形內(nèi),但由于多邊形可能為凹,所以這不能成為判斷的充分條件。如果線段和多邊形的某條邊內(nèi)交(兩線段 內(nèi)交是指兩線段相交且交點不在兩線段的端點),因為多邊形的邊的左右兩側(cè)分屬多邊形內(nèi)外不同部分,所以線段一定會有一部分在多邊形外(見圖a)。于是我們 得到線段在多邊形內(nèi)的第二個必要條件:線段和多邊形的所有邊都不內(nèi)交。 線段和多邊形交于線段的兩端點并不會影響線段是否在多邊形內(nèi);但是如果多邊形的某個頂點和線段相交,還必須判斷兩相鄰交點之間的線段是否包含于多邊形內(nèi)部(反例見圖b)。 因此我們可以先求出所有和線段相交的多邊形的頂點,然后按照X-Y坐標排序(

15、X坐標小的排在前面,對于X坐標相同的點,Y坐標小的排在前面,這種排序準則 也是為了保證水平和垂直情況的判斷正確),這樣相鄰的兩個點就是在線段上相鄰的兩交點,如果任意相鄰兩點的中點也在多邊形內(nèi),則該線段一定在多邊形內(nèi)。 證明如下: 命題1: 如果線段和多邊形的兩相鄰交點P1 ,P2的中點P' 也在多邊形內(nèi),則P1, P2之間的所有點都在多邊形內(nèi)。 證明: 假設(shè)P1,P2之間含有不在多邊形內(nèi)的點,不妨設(shè)該點為Q,在P1, P'之間,因為多邊形是閉合曲線,所以其內(nèi)外部之間有界,而P1屬于多邊行內(nèi)部,Q屬于多邊性外部,P'屬于多邊性內(nèi)部,P1-Q-P'完全連續(xù), 所以P

16、1Q和QP'一定跨越多邊形的邊界,因此在P1,P'之間至少還有兩個該線段和多邊形的交點,這和P1P2是相鄰兩交點矛盾,故命題成立。證 畢。 由命題1直接可得出推論: 推論2: 設(shè)多邊形和線段PQ的交點依次為P1,P2,Pn,其中Pi和Pi+1是相鄰兩交點,線段PQ在多邊形內(nèi)的充要條件是:P,Q在多邊形內(nèi)且對于i =1, 2, n-1,Pi ,Pi+1的中點也在多邊形內(nèi)。 在實際編程中,沒有必要計算所有的交點,首先應(yīng)判斷線段和多邊形的邊是否內(nèi)交,倘若線段和多邊形的某條邊內(nèi)交則線段一定在多邊形外;如果線段和多邊形的每一條邊都不內(nèi)交,則線段和多邊形的交點一定是線段的端點或者多邊形的頂

17、點,只要判斷點是否在線段上就可以了。 至此我們得出算法如下: if 線端PQ的端點不都在多邊形內(nèi) then return false; 點集pointSet初始化為空; for 多邊形的每條邊s do if 線段的某個端點在s上 then 將該端點加入pointSet; else if s的某個端點在線段PQ上 then 將該端點加入pointSet; else if s和線段PQ相交 / 這時候已經(jīng)可以肯定是內(nèi)交了 then return false; 將pointSet中的點按照X-Y坐標排序; for pointSet中每兩個相鄰點 pointSeti , pointSet i+1 do

18、 if pointSeti , pointSet i+1 的中點不在多邊形中 then return false; return true; 這個過程中的排序因為交點數(shù)目肯定遠小于多邊形的頂點數(shù)目n,所以最多是常數(shù)級的復雜度,幾乎可以忽略不計。因此算法的時間復雜度也是O(n)。判斷折線是否在多邊形內(nèi): 只要判斷折線的每條線段是否都在多邊形內(nèi)即可。設(shè)折線有m條線段,多邊形有n個頂點,則該算法的時間復雜度為O(m*n)。 判斷多邊形是否在多邊形內(nèi): 只要判斷多邊形的每條邊是否都在多邊形內(nèi)即可。判斷一個有m個頂點的多邊形是否在一個有n個頂點的多邊形內(nèi)復雜度為O(m*n)。 判斷矩形是否在多邊形內(nèi):

19、將矩形轉(zhuǎn)化為多邊形,然后再判斷是否在多邊形內(nèi)。 判斷圓是否在多邊形內(nèi): 只要計算圓心到多邊形的每條邊的最短距離,如果該距離大于等于圓半徑則該圓在多邊形內(nèi)。計算圓心到多邊形每條邊最短距離的算法在后文闡述。 判斷點是否在圓內(nèi): 計算圓心到該點的距離,如果小于等于半徑則該點在圓內(nèi)。 判斷線段、折線、矩形、多邊形是否在圓內(nèi): 因為圓是凸集,所以只要判斷是否每個頂點都在圓內(nèi)即可。 判斷圓是否在圓內(nèi): 設(shè)兩圓為O1,O2,半徑分別為r1, r2,要判斷O2是否在O1內(nèi)。先比較r1,r2的大小,如果r1<r2則O2不可能在O1內(nèi);否則如果兩圓心的距離大于r1 - r2 ,則O2不在O1內(nèi);否則O2在O

20、1內(nèi)。 計算點到線段的最近點: 如 果該線段平行于X軸(Y軸),則過點point作該線段所在直線的垂線,垂足很容易求得,然后計算出垂足,如果垂足在線段上則返回垂足,否則返回離垂足近 的端點;如果該線段不平行于X軸也不平行于Y軸,則斜率存在且不為0。設(shè)線段的兩端點為pt1和pt2,斜率為:k = ( pt2.y - pt1. y ) / (pt2.x - pt1.x );該直線方程為:y = k* ( x - pt1.x) + pt1.y。其垂線的斜率為 - 1 / k,垂線方程為:y = (-1/k) * (x - point.x) + point.y 。 聯(lián)立兩直線方程解得:x = ( k2

21、 * pt1.x + k * (point.y - pt1.y ) + point.x ) / ( k2 + 1) ,y = k * ( x - pt1.x) + pt1.y;然后再判斷垂足是否在線段上,如果在線段上則返回垂足;如果不在則計算兩端點到垂足的距離,選擇距離垂足較近的端點返回。 計算點到折線、矩形、多邊形的最近點: 只要分別計算點到每條線段的最近點,記錄最近距離,取其中最近距離最小的點即可。 計算點到圓的最近距離及交點坐標: 如果該點在圓心,因為圓心到圓周任一點的距離相等,返回UNDEFINED。 連接點P和圓心O,如果PO平行于X軸,則根據(jù)P在O的左邊還是右邊計算出最近點的橫坐標

22、為centerPoint.x - radius 或 centerPoint.x + radius。如果PO平行于Y軸,則根據(jù)P在O的上邊還是下邊計算出最近點的縱坐標為 centerPoint.y -+radius或 centerPoint.y - radius。如果PO不平行于X軸和Y軸,則PO的斜率存在且不為0,這時直線PO斜率為k = ( P.y - O.y )/ ( P.x - O.x )。直線PO的方程為:y = k * ( x - P.x) + P.y。設(shè)圓方程為:(x - O.x ) 2 + ( y - O.y ) 2 = r 2,聯(lián)立兩方程組可以解出直線PO和圓的交點,取其中離P

23、點較近的交點即可。計算兩條共線的線段的交點: 對 于兩條共線的線段,它們之間的位置關(guān)系有下圖所示的幾種情況。圖(a)中兩條線段沒有交點;圖 (b) 和 (d) 中兩條線段有無窮焦點;圖 (c) 中兩條線段有一個交點。設(shè)line1是兩條線段中較長的一條,line2是較短的一條,如果line1包含了line2的兩個端點,則是圖(d)的情況, 兩線段有無窮交點;如果line1只包含line2的一個端點,那么如果line1的某個端點等于被line1包含的line2的那個端點,則是圖(c) 的情況,這時兩線段只有一個交點,否則就是圖(b)的情況,兩線段也是有無窮的交點;如果line1不包含line2的任

24、何端點,則是圖(a)的情況,這 時兩線段沒有交點。 計算線段或直線與線段的交點: 設(shè)一條線段為L0 = P1P2,另一條線段或直線為L1 = Q1Q2 ,要計算的就是L0和L1的交點。 1 首先判斷L0和L1是否相交(方法已在前文討論過),如果不相交則沒有交點,否則說明L0和L1一定有交點,下面就將L0和L1都看作直線來考慮。 2 如果P1和P2橫坐標相同,即L0平行于Y軸 a) 若L1也平行于Y軸, i. 若P1的縱坐標和Q1的縱坐標相同,說明L0和L1共線,假如L1是直線的話他們有無窮的交點,假如L1是線段的話可用"計算兩條共線線段的交點"的算法求他們的交點(該方法在前

25、文已討論過); ii. 否則說明L0和L1平行,他們沒有交點; b) 若L1不平行于Y軸,則交點橫坐標為P1的橫坐標,代入到L1的直線方程中可以計算出交點縱坐標; 3 如果P1和P2橫坐標不同,但是Q1和Q2橫坐標相同,即L1平行于Y軸,則交點橫坐標為Q1的橫坐標,代入到L0的直線方程中可以計算出交點縱坐標; 4 如果P1和P2縱坐標相同,即L0平行于X軸 a) 若L1也平行于X軸, i. 若P1的橫坐標和Q1的橫坐標相同,說明L0和L1共線,假如L1是直線的話他們有無窮的交點,假如L1是線段的話可用"計算兩條共線線段的交點"的算法求他們的交點(該方法在前文已討論過); i

26、i. 否則說明L0和L1平行,他們沒有交點; b) 若L1不平行于X軸,則交點縱坐標為P1的縱坐標,代入到L1的直線方程中可以計算出交點橫坐標; 5 如果P1和P2縱坐標不同,但是Q1和Q2縱坐標相同,即L1平行于X軸,則交點縱坐標為Q1的縱坐標,代入到L0的直線方程中可以計算出交點橫坐標; 6 剩下的情況就是L1和L0的斜率均存在且不為0的情況 a) 計算出L0的斜率K0,L1的斜率K1 ; b) 如果K1 = K2 i. 如果Q1在L0上,則說明L0和L1共線,假如L1是直線的話有無窮交點,假如L1是線段的話可用"計算兩條共線線段的交點"的算法求他們的交點(該方法 在前

27、文已討論過); ii. 如果Q1不在L0上,則說明L0和L1平行,他們沒有交點。 c) 聯(lián)立兩直線的方程組可以解出交點來 這個算法并不復雜,但是要分情況討論清楚,尤其是當兩條線段共線的情況需要單獨考慮,所以在前文將求兩條共線線段的算法單獨寫出來。另外,一開始就先利用 矢量叉乘判斷線段與線段(或直線)是否相交,如果結(jié)果是相交,那么在后面就可以將線段全部看作直線來考慮。需要注意的是,我們可以將直線或線段方程改寫為 ax+by+c=0的形式,這樣一來上述過程的部分步驟可以合并,縮短了代碼長度,但是由于先要求出參數(shù),這種算法將花費更多的時間。 求線段或直線與折線、矩形、多邊形的交點: 分別求與每條邊的交點即可。 求線段或直線與圓的交點: 設(shè)圓心為O,圓半徑為r,直線(或線段)L上的兩點為P1,P2。 1. 如果L是線段且P1,P2都包含在圓O內(nèi),則沒有交點;否則進行下一步。 2. 如果L平行于Y軸, a) 計算圓心到L的距離dis; b) 如果dis >

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論