高二文科數(shù)學教案《2.1.2橢圓的簡單幾何性質(一)》_第1頁
高二文科數(shù)學教案《2.1.2橢圓的簡單幾何性質(一)》_第2頁
高二文科數(shù)學教案《2.1.2橢圓的簡單幾何性質(一)》_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、X軸上橢圓為例2lyl Wb.2220,得x=±a,點Ai(a,0)、A2(a,0)是橢圓和x軸的兩個交點.橢圓有四個頂點:Ai( a, 0)、2.L2橢圓的簡單幾何性質(一)教學目標: 橢圓的范圍、對稱性、對稱中心、離心率及頂點(截距)重點難點分析教學重點:橢圓的簡單幾何性質.教學難點:橢圓的簡單幾何性質.教學設計:【復習引入】1 .橢圓的定義是什么?2 .橢圓的標準方程是什么?【講授新課】利用橢圓的標準方程研究橢圓的幾何性質.以焦點在x 2 上 + 0 =l(a> b> 0). a 2 b2x2橢圓上點的坐標(X, y)都適合不等式 冬a橢圓位于直線x=±

2、a和y=± b圍成的矩形里.3 .對稱性在橢圓的標準方程里,把x換成一X,或 把y換成一y,或把x、y同時換成一x、一 y時, 方程有變化嗎?這說明什么? 橢圓關于y軸、x軸、原點都是對稱的.坐標軸是橢圓的對稱軸.原點是橢圓的對稱中心。橢圓的對稱中心叫做橢圓的中心.4 .頂點只須令x=0,得y=±b,點Bi (0,b)、B2(0, b)是橢圓和y軸的兩個交點;令 y3頁A2(a,0)、Bi(0, b)、B2 (0, b).橢圓和它的對稱軸的四個交點叫橢圓的頂點.線段A1A2、B1B2分別叫做橢圓的長軸和短軸 長軸的長等于2a.短軸的長等于2b.a叫做橢圓的 長半軸長.b叫做

3、橢圓的短半軸長.IBiF ilIBiF2l= IB2F il= IB2F2l= a.在 RtA OB2F 2 中,IOF 2p= IB2F 2l2- IOB2P,BP c2=a2 b2.由橢圓的范圍、對稱性和頂點,再進行描點畫圖,只須描出較少的點, 正確的圖形.ca> c> 0,0< e<l.橢圓的焦距與長軸長的比e =_,叫做橢圓的離心率.丁a當越接近時,越接近,從而=廠;(1) elca b a c越小,因此橢圓越扁;(2)當e越接近。時,c越接近0,從而b越接 近a,因此橢圓越接近于圓;(3)當且僅當a=b時,c=0,兩焦點重合,圖形變 為圓,方程成為x2 +y2

4、=a2.練習教科書P.41練習第5題.例1求橢圓16x2+ 25y2= 400的長軸和短軸的長、離心率、焦點和頂點的坐標,并用 描點法畫出它的圖形.解:把已知方程化成標準方程橢圓的長軸和短軸的長分別是X . V 2/.= 這里 a=5, b=4,所以 c = U 25 16= 3. 5242_ C2a= 10和2b= 8,離心率e.焦點為 Fi(-3, 0)、F 2(3,0),頂點是 Ai(-5,0)> A2(5,0),x2 上 y2把已知方程化成標準方程 += 1,5242在X012345y43.93.73.22.40先描點畫出橢圓的一部分,再利用橢圓的對稱性質畫出整個橢圓. 橢圓的簡

5、單作法:0- X,5的范圍內(nèi)算出幾個點的坐標(x, y):(1)以橢圓的長軸、短軸為鄰邊畫矩形;(2)由矩形四邊的中點確定橢圓的四個頂點;(3)用曲線將四個頂點連成一個橢圓.例2求適合下列條件的橢圓的標準方程:3(1)經(jīng)過點P(3,0)、Q(o,- 2);(2)長軸的長等于20,離心率等于5解:(1)由橢圓的幾何性質可知,以坐標軸為對稱軸的橢圓與坐標軸的交點就是橢圓的頂點 即P、Q分別是橢圓長軸和短軸的一個端點.于是得a=3, b=2.22又因為長軸在x軸上,所以橢圓的標準方程是+21 = 1.94(2)由已知,2a=20 , e =_c=_ a= 10 , c= 6. A b2= 102 -62= 64. a 5,橢圓的焦點可能在 x軸上,也可能在 y軸上,2222所求橢圓的標準方程為 二十11=1或1.100 64100 64練習 求經(jīng)過點P (4, 1),且長軸長是短軸長的2倍的橢圓的標準方程.解:若焦點在X軸上,設橢圓方程為:支+/2=1包3 Q),a2 b2> =2b口依題意有監(jiān)1得倚:2 5I

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論