




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Chapter 6 靜電場(chǎng)靜電場(chǎng) 一、電場(chǎng)一、電場(chǎng)0FEq1. 電場(chǎng)強(qiáng)度電場(chǎng)強(qiáng)度點(diǎn)電荷點(diǎn)電荷Q的場(chǎng)強(qiáng)的場(chǎng)強(qiáng)r20e4QEr球?qū)ΨQ球?qū)ΨQ場(chǎng)強(qiáng)疊加原理場(chǎng)強(qiáng)疊加原理帶電體由帶電體由 n 個(gè)點(diǎn)電荷組成個(gè)點(diǎn)電荷組成EEii帶電體電荷連續(xù)分布帶電體電荷連續(xù)分布r20de4QQdqEEr 解:解:xdr 6-4 長(zhǎng)為長(zhǎng)為L(zhǎng)的的 均勻帶電細(xì)棒均勻帶電細(xì)棒AB,電荷線密度為,電荷線密度為 ,求:求:(1)AB棒延長(zhǎng)線上棒延長(zhǎng)線上P 1 點(diǎn)的場(chǎng)強(qiáng)點(diǎn)的場(chǎng)強(qiáng) *(2)棒端點(diǎn))棒端點(diǎn)B正上方正上方P2點(diǎn)的場(chǎng)強(qiáng)點(diǎn)的場(chǎng)強(qiáng)aPLoxxddqx在AB上任取一長(zhǎng)度為dx的電荷元,電量為2200ddd44()xxErLaxdE在P
2、點(diǎn)大小2000dd4()4()BLAxLEELaxa La P點(diǎn)場(chǎng)強(qiáng).方向:沿方向:沿AP1方向方向6-5 一根玻璃棒被彎成半徑為一根玻璃棒被彎成半徑為R的半圓形,其上電的半圓形,其上電荷均勻分布,總電荷量為荷均勻分布,總電荷量為q.求半圓中心求半圓中心O的場(chǎng)強(qiáng)。的場(chǎng)強(qiáng)。解:在圓環(huán)上任取電荷元解:在圓環(huán)上任取電荷元dqrRqE420ddsincosEEEExxdddd由對(duì)稱性分析知由對(duì)稱性分析知垂直垂直x 軸的場(chǎng)強(qiáng)為軸的場(chǎng)強(qiáng)為0EE xxOdqyxdERsRqEExco420d/2200d2cos4xlEER/2220000cos d222(,/,)qRRRdqdlqR dlRd .方向:沿方
3、向:沿x軸方向軸方向 二、電場(chǎng)強(qiáng)度通量與高斯定理二、電場(chǎng)強(qiáng)度通量與高斯定理niiSqSE10e1d,內(nèi)無限長(zhǎng)均勻帶電直線的電場(chǎng)強(qiáng)度無限長(zhǎng)均勻帶電直線的電場(chǎng)強(qiáng)度rE0 2無限大均勻帶電平面的電場(chǎng)強(qiáng)度無限大均勻帶電平面的電場(chǎng)強(qiáng)度02E 解:解: 6-13兩無限長(zhǎng)同軸圓柱面,半徑分別為兩無限長(zhǎng)同軸圓柱面,半徑分別為 R1和和R2 (R2 R1),分別帶有等量異號(hào)電荷(內(nèi)圓柱面帶正分別帶有等量異號(hào)電荷(內(nèi)圓柱面帶正電),且兩圓柱面沿軸線每單位長(zhǎng)度所帶電荷電),且兩圓柱面沿軸線每單位長(zhǎng)度所帶電荷的數(shù)值都為的數(shù)值都為。試分別求出三區(qū)域中離圓柱面。試分別求出三區(qū)域中離圓柱面軸線為軸線為r處的場(chǎng)強(qiáng):處的場(chǎng)強(qiáng):
4、r R1; r R2; R1 r R2.(1)在內(nèi)圓柱面內(nèi)做一同軸圓柱形高斯面,由于高斯內(nèi)沒有電荷,所以E = 0,(r R2)02Er根據(jù)高斯定理e = q/0,所以 (R1 r R2)rlESESEsS2dd(e柱面) 解:解: 6-14(1)一半徑為一半徑為R的帶電球,其上電荷分布的的帶電球,其上電荷分布的體密度體密度為一常數(shù),試求此帶電球體內(nèi)、外的為一常數(shù),試求此帶電球體內(nèi)、外的場(chǎng)強(qiáng)分布。場(chǎng)強(qiáng)分布。.333444333QrrR高斯面內(nèi)電荷為304QErR 由高斯定理得204QEr 高斯球面內(nèi)電荷Q 由高斯定理得.在球內(nèi)(rR)作高斯球面24drESES 三、環(huán)路定理與電勢(shì)三、環(huán)路定理與
5、電勢(shì)lEl d0電勢(shì)電勢(shì)0UPPUEld點(diǎn)電荷電場(chǎng)的電勢(shì)點(diǎn)電荷電場(chǎng)的電勢(shì)04PqUr00UPq ElPd電勢(shì)能電勢(shì)能電勢(shì)的疊加原理電勢(shì)的疊加原理04iPiiqUr 6-17 如圖所示,如圖所示,A點(diǎn)有電荷點(diǎn)有電荷+q,B點(diǎn)有電荷點(diǎn)有電荷-q,AB=2l,OCD是以是以B為為中心、中心、l為半徑的半圓。為半徑的半圓。(1)將單位正將單位正電荷從電荷從O點(diǎn)沿點(diǎn)沿OCD移到移到D點(diǎn),電場(chǎng)力點(diǎn),電場(chǎng)力做功多少?(做功多少?(2)將單位負(fù)電荷從)將單位負(fù)電荷從D點(diǎn)沿點(diǎn)沿AB延長(zhǎng)線移到無窮遠(yuǎn)處,電場(chǎng)延長(zhǎng)線移到無窮遠(yuǎn)處,電場(chǎng)力做功多少?力做功多少? 6-19 在在半徑分別為半徑分別為 R R1 1和和R R
6、2 2的兩個(gè)同心球面上,的兩個(gè)同心球面上,分別均勻帶電,電荷量各為分別均勻帶電,電荷量各為Q Q1 1和和Q Q2 2,且,且R1 R2。求下列區(qū)域內(nèi)的電勢(shì)分布:求下列區(qū)域內(nèi)的電勢(shì)分布:r R1; R1 r R2; r R2 四、導(dǎo)體與電介質(zhì)中的靜電場(chǎng)四、導(dǎo)體與電介質(zhì)中的靜電場(chǎng)導(dǎo)體靜電平衡導(dǎo)體靜電平衡(1) 導(dǎo)體中處處如此導(dǎo)體中處處如此0E(2) 導(dǎo)體外表面導(dǎo)體外表面.E 導(dǎo)體是等勢(shì)體,其表面是等勢(shì)面導(dǎo)體是等勢(shì)體,其表面是等勢(shì)面.介質(zhì)高斯定理介質(zhì)高斯定理e11dniiSESq,內(nèi)6-23 兩個(gè)均勻帶電的金屬同心球殼,內(nèi)球殼(厚度不兩個(gè)均勻帶電的金屬同心球殼,內(nèi)球殼(厚度不計(jì))半徑為計(jì))半徑為R
7、1=5.0cm,帶電荷,帶電荷q1=0.6010-8C;外球;外球殼內(nèi)半徑殼內(nèi)半徑R2=7.5cm ,外半徑,外半徑R1=9.0cm ,所帶總電荷,所帶總電荷q2=-2.0010-8C ,求,求(1)距離球心距離球心3.0cm、 6.0cm、 8.0cm、 10.0cm各點(diǎn)處的場(chǎng)強(qiáng)和電勢(shì)各點(diǎn)處的場(chǎng)強(qiáng)和電勢(shì);(2)如果用導(dǎo)電如果用導(dǎo)電線把兩個(gè)球殼連結(jié)起來,結(jié)果又如何?線把兩個(gè)球殼連結(jié)起來,結(jié)果又如何?6-24 在一半徑為在一半徑為a的長(zhǎng)直導(dǎo)線的外面,套有內(nèi)半徑為的長(zhǎng)直導(dǎo)線的外面,套有內(nèi)半徑為b的同軸導(dǎo)體薄圓筒,它們之間充以相對(duì)介電常數(shù)為的同軸導(dǎo)體薄圓筒,它們之間充以相對(duì)介電常數(shù)為rr的均勻電介質(zhì)
8、,設(shè)導(dǎo)線和圓筒都均勻帶電,且沿軸線單的均勻電介質(zhì),設(shè)導(dǎo)線和圓筒都均勻帶電,且沿軸線單位長(zhǎng)度所帶電荷分別為位長(zhǎng)度所帶電荷分別為和和- .(1)求空間中各點(diǎn)的場(chǎng))求空間中各點(diǎn)的場(chǎng)強(qiáng)大??;(強(qiáng)大小;(2)求導(dǎo)線和圓筒間的電勢(shì)差)求導(dǎo)線和圓筒間的電勢(shì)差. ;0:Ear;0:Ebr;2:0rEbrar解:(1) abdrrUUbarrBAln2200(2)導(dǎo)線與外圓筒間電勢(shì)差. 五、電容與電場(chǎng)能量五、電容與電場(chǎng)能量電容電容qCU平板電容器的電容平板電容器的電容SCd電容器的電能電容器的電能2221212CUQUCQWe 電場(chǎng)電場(chǎng)能量密度能量密度: :212ewE電場(chǎng)能量電場(chǎng)能量: : VVeedVEdV
9、wW221 解:解: 6-28 一空氣平板電容器的電容一空氣平板電容器的電容C=1.0pFC=1.0pF,充電到電荷為,充電到電荷為Q=1.0Q=1.01010-6-6C C后,將電源切斷。(后,將電源切斷。(1 1)求極板間的電勢(shì)差)求極板間的電勢(shì)差和電場(chǎng)能量;(和電場(chǎng)能量;(2 2)將兩極板拉開,使距離增到原距離的)將兩極板拉開,使距離增到原距離的兩倍,試計(jì)算拉開前后電場(chǎng)能的改變,并解釋其原因。兩倍,試計(jì)算拉開前后電場(chǎng)能的改變,并解釋其原因。.能量增加的 原因是因?yàn)槿死_極板做功,轉(zhuǎn)化為電場(chǎng)能。電源斷開,電量保持不變 解:解: 6-31 在介電常數(shù)為在介電常數(shù)為的無限大均勻電介質(zhì)中,有一半
10、徑的無限大均勻電介質(zhì)中,有一半徑為為R R的導(dǎo)體球帶電荷的導(dǎo)體球帶電荷Q Q。求電場(chǎng)的能量。求電場(chǎng)的能量。.Chapter 7 穩(wěn)恒磁場(chǎng)穩(wěn)恒磁場(chǎng)一一. .磁感應(yīng)強(qiáng)度磁感應(yīng)強(qiáng)度 30d4drrlIB 畢奧畢奧-薩伐爾定律薩伐爾定律疊加原理疊加原理LBBdiBB總無限長(zhǎng)載流直導(dǎo)線無限長(zhǎng)載流直導(dǎo)線002rIB載流圓線圈圓心載流圓線圈圓心RIB207-11 一條無限長(zhǎng)直導(dǎo)線在一處彎折成半徑為R的圓弧,若已知導(dǎo)線中電流強(qiáng)度為I,試?yán)卯厞W-薩伐爾定律求(1)當(dāng)圓弧為半圓周時(shí),圓心O處的磁感應(yīng)強(qiáng)度;(2)當(dāng)圓弧為1/4圓周時(shí),圓心O處的磁感應(yīng)強(qiáng)度。7-15 一無限長(zhǎng)載流導(dǎo)線折成圖示形狀。(1)用畢奧-薩伐
11、爾定律;(2)用相關(guān)結(jié)論計(jì)算圖中O點(diǎn)的磁感應(yīng)強(qiáng)度。二二. .高斯定理高斯定理 0SSdB三三. .環(huán)路定理環(huán)路定理 nnLIlB0d7-21 一根很長(zhǎng)的同軸電纜,由一導(dǎo)體圓柱(半徑為a)和一同軸導(dǎo)體圓管(內(nèi)、外半徑分別為b、c)構(gòu)成,使用時(shí),電流I從一導(dǎo)體流去,從另一導(dǎo)體流回. 設(shè)電流都是均勻地分布在導(dǎo)體的橫截面上,求(1)導(dǎo)體圓柱內(nèi)(ra);(2)兩導(dǎo)體之間(arb);(3)導(dǎo)體圓管內(nèi)(brc)各點(diǎn)處磁感應(yīng)強(qiáng)度的大小.7-23 矩形截面的螺繞環(huán),繞有N匝線圈,通以電流I,(1)求環(huán)內(nèi)磁感應(yīng)強(qiáng)度的分布;(2)證明通過螺繞環(huán)截面的磁通量解:Chapter 8 電磁感應(yīng)電磁感應(yīng)一一. . 法拉第電
12、磁感應(yīng)定律法拉第電磁感應(yīng)定律 ddm t i 二二. . 動(dòng)生電動(dòng)勢(shì)動(dòng)生電動(dòng)勢(shì) D d) ( balBv8-5 有一無限長(zhǎng)螺線管,單位長(zhǎng)度上線圈的匝數(shù)為n,在管的中心放置一繞了N圈、半徑為r的圓形小線圈,其軸線與螺線管的軸線平行,設(shè)螺線管內(nèi)電流變化率為dI/dt,求小線圈中的感應(yīng)電動(dòng)勢(shì)。8-9 長(zhǎng)為l的一金屬棒ab,水平放置在均勻磁場(chǎng)B中,金屬棒可繞O點(diǎn)在水平面內(nèi)以角速度旋轉(zhuǎn),O點(diǎn)離a端的距離為l/k(k2).試求a、b兩端的電勢(shì)差,并指出哪端電勢(shì)高。三三. . 自感與互感自感與互感自感自感LImtILLdd互感互感21MI12ddIMt 四四. . 磁場(chǎng)能量磁場(chǎng)能量212mWLI線圈能量線圈
13、能量 磁場(chǎng)能量密度磁場(chǎng)能量密度212mBw磁場(chǎng)能量磁場(chǎng)能量: : 212mmVVBWw dVdV8-15 一紙筒長(zhǎng)30cm,截面直徑為3.0cm,筒上繞有500匝線圈,求自感。解:8-17 一由兩薄圓筒構(gòu)成的同軸電纜,內(nèi)筒半徑為R1,外筒半徑為R2,兩筒間的介質(zhì)r=1。設(shè)內(nèi)圓筒和外圓筒中的電流方向相反,而電流強(qiáng)度I相等,求長(zhǎng)度為L(zhǎng)的一段同軸電纜所貯存的磁能。 8-18 兩個(gè)共軸圓線圈,半徑分別為R及r(Rr),匝數(shù)分別為N1和N2,兩線圈的中心相距為L(zhǎng)。設(shè)r很小,則小線圈所在處的磁場(chǎng)可以視為均勻的。求互感系數(shù)。Chapter 4 氣體動(dòng)理論氣體動(dòng)理論一一.理想氣體狀態(tài)方程理想氣體狀態(tài)方程RTM
14、PV KJ/mol318 .RPnkT或或KJNRko/.2310381二二.理想氣體壓強(qiáng)公式理想氣體壓強(qiáng)公式knvmnP3221322)(三三.理想氣體溫度公式理想氣體溫度公式kTk23四四.自由度與內(nèi)能自由度與內(nèi)能自由度自由度 i=3、5、6RTiME2內(nèi)能內(nèi)能五五.速率分布函數(shù)速率分布函數(shù)vvfNN)(分布函數(shù)分布函數(shù)vNN)v(f 概率概率N: 氣體的總分子數(shù)氣體的總分子數(shù) N: 速率位于速率位于 v v+ v的分子數(shù)的分子數(shù)三種速率三種速率:最概然速率:最概然速率:方均根速率:方均根速率:平均速率:平均速率:RT.mkTvP4112RT.mkTv73132RT.mkTv59184-5
15、 某實(shí)驗(yàn)室獲得的真空的為壓強(qiáng)某實(shí)驗(yàn)室獲得的真空的為壓強(qiáng)1.3310-8Pa。試問,試問,在在27時(shí)此真空中的氣體分子數(shù)密度是多少?氣體分時(shí)此真空中的氣體分子數(shù)密度是多少?氣體分子的平均平動(dòng)動(dòng)能是多少?子的平均平動(dòng)動(dòng)能是多少?4-11 質(zhì)量均為2g的氦氣和氫氣分別裝在兩個(gè)容積相同的封閉容器內(nèi),溫度也相同。設(shè)氫氣分子可視為剛性分子,試問(1)氫分子與氦分子的平均平動(dòng)動(dòng)能之比是多少?(2)氫氣和氦氣的壓強(qiáng)之比是多少?(3)氫氣和氦氣的內(nèi)能之比又是多少?解:解:4-13 試說明下列各式的意義:(1)f(v)dv; (2)Nf(v)dv; (3) ;(4) f v dvpv 21Nf v dvvv解:4
16、-15 在體積為310-2m3的容器中裝有210-2kg的氣體,容器內(nèi)氣體壓強(qiáng)為5.065104Pa。求氣體分子的最概然速率。解:Chapter 5 熱力學(xué)定律熱力學(xué)定律 一、熱力學(xué)第一定律一、熱力學(xué)第一定律21dVVQEWEP V 5-4 如圖所示,系統(tǒng)從狀態(tài)a沿acb變化到狀態(tài)b ,有334J的熱量傳遞給系統(tǒng),而系統(tǒng)對(duì)外作的功為126J(1)若沿曲線adb時(shí),系統(tǒng)作功42J,問有多少熱量傳遞給系統(tǒng)?(2)當(dāng)系統(tǒng)從狀態(tài)b沿曲線bea返回到狀態(tài)a時(shí),外界對(duì)系統(tǒng)作功84 J ,問系統(tǒng)是吸熱還是放熱?傳遞了多少熱量?(3)若Ed -Ea=167J ,求系統(tǒng)沿ad及db變化時(shí),各吸收了多少熱量?pV
17、abcdeO5-5 壓強(qiáng)為壓強(qiáng)為1.013105Pa,體積為,體積為110-3m3的氧氣,的氧氣,自溫度自溫度0加熱到加熱到160 ,問:(,問:(1)當(dāng)壓強(qiáng)不變時(shí),)當(dāng)壓強(qiáng)不變時(shí),需要多少熱量?(需要多少熱量?(2)當(dāng)體積不變時(shí),需要多少熱量)當(dāng)體積不變時(shí),需要多少熱量?(3)在等壓和等體過程中,各做了多少功?)在等壓和等體過程中,各做了多少功? 二、循環(huán)過程二、循環(huán)過程 p O V熱機(jī)的效率熱機(jī)的效率 1211QQQW量放熱分過程所放出的熱量吸熱分過程所吸收的熱系統(tǒng)對(duì)外所做凈功:21QQW致冷機(jī)的致冷系數(shù)致冷機(jī)的致冷系數(shù) 2122QQQWQ量吸熱分過程所吸收的熱量放熱分過程所放出的熱外界對(duì)
18、系統(tǒng)所做凈功:21QQW5-10 有1mol單原子理想氣體作如圖所示的循環(huán)過程。求氣體在循環(huán)過程中對(duì)外所做的凈功,并求循環(huán)效率。P(105Pa)V(10-3m3)5-1 0.32kg的氧氣作如圖所示的循環(huán),ab、cd為等溫過程,bc、da為等體過程,V2=2V1,T1=300K,T2=200K,求循環(huán)效率。pV5-14 一卡諾熱機(jī)的低溫?zé)嵩吹臏囟葹?,效率為40%,若要將其效率提高到50%,問高溫?zé)嵩吹臏囟葢?yīng)提高多少? 三、熱力學(xué)第二定律三、熱力學(xué)第二定律1. 1. 開爾文表述開爾文表述 不可能從單一熱源吸收熱量,使之完全變?yōu)橛杏霉?,而不放不可能從單一熱源吸收熱量,使之完全變?yōu)橛杏霉?,而不放?/p>
19、熱量給其他物體,或者說不產(chǎn)生其它影響。出熱量給其他物體,或者說不產(chǎn)生其它影響。 2. 2. 克勞修斯表達(dá)克勞修斯表達(dá)不可能把熱量從低溫物體傳向高溫物體而不產(chǎn)生其它影響不可能把熱量從低溫物體傳向高溫物體而不產(chǎn)生其它影響 三、卡諾循環(huán)三、卡諾循環(huán)由兩個(gè)等溫過程和兩個(gè)絕熱過程組成由兩個(gè)等溫過程和兩個(gè)絕熱過程組成3 21 4 O V pT=T1絕熱T=T2絕熱卡諾熱機(jī)的效率卡諾熱機(jī)的效率 121TT卡諾致冷機(jī)的致冷系數(shù)卡諾致冷機(jī)的致冷系數(shù) 2122TTTWQ121TT卡諾定理卡諾定理5-16 試根據(jù)熱力學(xué)第二定律判斷下列兩種說法試根據(jù)熱力學(xué)第二定律判斷下列兩種說法是否正確。是否正確。 (1)功可以全部
20、轉(zhuǎn)化為熱,但熱不能全部轉(zhuǎn)化)功可以全部轉(zhuǎn)化為熱,但熱不能全部轉(zhuǎn)化為功;為功; (2)熱量能夠自高溫物體傳給低溫物體,但不)熱量能夠自高溫物體傳給低溫物體,但不能從低溫物體傳給高溫物體。能從低溫物體傳給高溫物體。5-20 試證明在同一試證明在同一P-V圖上,一定量的圖上,一定量的理想氣體的一條絕熱線與一條等溫線不理想氣體的一條絕熱線與一條等溫線不能相交于兩點(diǎn)。能相交于兩點(diǎn)。Chapter 狹義相對(duì)論狹義相對(duì)論在任何慣性系中在任何慣性系中,光在真空中的傳播速度不變,恒為光在真空中的傳播速度不變,恒為c c 。1 1). . 相對(duì)性原理相對(duì)性原理: : 一切物理定律在任何慣性系中形式相同。一切物理定
21、律在任何慣性系中形式相同。 2 2). . 光速不變?cè)恚汗馑俨蛔冊(cè)恚?(對(duì)物理定律而言,(對(duì)物理定律而言,一切慣性系都是等價(jià)的一切慣性系都是等價(jià)的。)。) 一、兩個(gè)原理一、兩個(gè)原理正正變變換換逆逆變變換換()xx ut2()uttxczzyy ()xxut2()uttxczzyy 二、二、 洛侖茲變換洛侖茲變換211uc根據(jù)根據(jù) L-T : 2()uttxc ( )xxu t2( )uttxc ( )xxu t 長(zhǎng)度收縮效應(yīng)長(zhǎng)度收縮效應(yīng)0/ll l 0 時(shí)間延緩時(shí)間延緩 效應(yīng)效應(yīng) 0 1-15(1)一靜止長(zhǎng)度為)一靜止長(zhǎng)度為4.0m的物體,若以速率的物體,若以速率0.6c沿沿x軸相對(duì)某軸相對(duì)某慣性系運(yùn)動(dòng)。試問從該慣性系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)店賬戶及電商團(tuán)隊(duì)管理交接服務(wù)合同
- 古建筑結(jié)構(gòu)安全監(jiān)測(cè)租賃合同(含現(xiàn)場(chǎng)勘查)
- 電視劇特效化妝假發(fā)租賃及后期制作服務(wù)合同
- 生物制藥核心專利技術(shù)授權(quán)與市場(chǎng)保護(hù)合同
- 互聯(lián)網(wǎng)金融服務(wù)合作與技術(shù)秘密保護(hù)協(xié)議
- 跨國(guó)婚姻忠誠(chéng)協(xié)議與海外財(cái)產(chǎn)轉(zhuǎn)移合同
- 影視特效血液儲(chǔ)存設(shè)備租賃及安全檢測(cè)協(xié)議
- DB42-T 2003-2023 東方百合鮮切花設(shè)施生產(chǎn)技術(shù)規(guī)程
- 汽車發(fā)動(dòng)機(jī)構(gòu)造與拆裝 課件 金濤 任務(wù)1-10 汽車發(fā)動(dòng)機(jī)整體機(jī)構(gòu)的認(rèn)識(shí)-水泵的認(rèn)識(shí)與拆裝
- 2023年人教版四年級(jí)語文上冊(cè)八單元測(cè)試卷及答案
- 陜西省咸陽市2025屆高三下學(xué)期高考模擬檢測(cè)(三)物理試題(含答案)
- 浙江省溫州市2023-2024學(xué)年高一下學(xué)期期末考試語文試卷(含答案)
- 2025年護(hù)士執(zhí)業(yè)資格考試題庫:護(hù)理教育與培訓(xùn)新生兒護(hù)理試題集
- 水果店運(yùn)營(yíng)與管理培訓(xùn)課件
- 1號(hào)卷·A10聯(lián)盟2025屆高三4月質(zhì)檢考物理試題及答案
- 2025年一級(jí)建造師之一建礦業(yè)工程實(shí)務(wù)題庫附答案(典型題)
- 國(guó)家職業(yè)技能標(biāo)準(zhǔn)-(糧油)倉儲(chǔ)管理員
- 履帶式起重機(jī)進(jìn)場(chǎng)驗(yàn)收表
- 汽車維修前臺(tái)接待流程參考指導(dǎo)
- 大數(shù)據(jù)驅(qū)動(dòng)的智慧社區(qū)建設(shè)研究
- 《人工智能生成合成內(nèi)容標(biāo)識(shí)辦法》知識(shí)講座
評(píng)論
0/150
提交評(píng)論