版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2018-2019學(xué)年江蘇省連云港市第二學(xué)期期末考試高二數(shù)學(xué)(理)試題一、填空題1已知復(fù)數(shù)(i為虛數(shù)單位),則的實(shí)部為_(kāi)【答案】;【解析】對(duì)復(fù)數(shù)進(jìn)行四運(yùn)算,化簡(jiǎn)成,求得的實(shí)部.【詳解】因?yàn)?,所以的?shí)部為.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及實(shí)部概念.2已知一組數(shù)據(jù)1,3,2,5,4,那么這組數(shù)據(jù)的方差為_(kāi)【答案】2;【解析】先求這組數(shù)據(jù)的平均數(shù),再代入方差公式,求方差.【詳解】因?yàn)?,方?【點(diǎn)睛】本題考查平均數(shù)與方差公式的簡(jiǎn)單應(yīng)用,考查基本的數(shù)據(jù)處理能力.3某公司生產(chǎn)甲、乙、丙三種型號(hào)的吊車(chē),產(chǎn)量分別為120臺(tái),600臺(tái)和200臺(tái),為檢驗(yàn)該公司的產(chǎn)品質(zhì)量,現(xiàn)用分層抽樣的方法抽取46臺(tái)進(jìn)行檢驗(yàn),則抽
2、到乙種型號(hào)的吊車(chē)應(yīng)是_臺(tái)【答案】30;【解析】根據(jù)分層抽樣的特點(diǎn),抽出樣本46臺(tái)中乙種型號(hào)的吊車(chē)的比例,與總體中乙種型號(hào)的吊車(chē)的比例相等.【詳解】抽到乙種型號(hào)的吊車(chē)臺(tái),則,解得:.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣.4根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果為_(kāi)【答案】16;【解析】程序語(yǔ)言表示“當(dāng)型循環(huán)結(jié)構(gòu)”,由值控制循環(huán)是否終止,當(dāng)時(shí),輸出的值.【詳解】輸出.【點(diǎn)睛】閱讀程序語(yǔ)言時(shí),要注意循環(huán)體執(zhí)行的次數(shù),何時(shí)終止循環(huán)是解題的難點(diǎn).5在的展開(kāi)式中常數(shù)項(xiàng)為30,則實(shí)數(shù)的值是_【答案】2;【解析】利用二項(xiàng)展開(kāi)式的通項(xiàng),當(dāng)?shù)拇蝺鐬闀r(shí),求得,再由展開(kāi)式中常數(shù)項(xiàng)為30,得到關(guān)于的方程.【詳解】因?yàn)?/p>
3、,當(dāng)時(shí),解得:.【點(diǎn)睛】本題考查二項(xiàng)式定理中的展開(kāi)式,考查基本運(yùn)算求解能力,運(yùn)算過(guò)程中要特別注意符號(hào)的正負(fù)問(wèn)題.610件產(chǎn)品中有2件次品,從中隨機(jī)抽取3件,則恰有1件次品的概率是_【答案】;【解析】利用超幾何分布的概率公式,直接求出恰有1件次品的概率.【詳解】設(shè)事件為“從中隨機(jī)抽取3件,則恰有1件次品”,則.【點(diǎn)睛】求解概率問(wèn)題的第一步是識(shí)別概率模型,再運(yùn)用公式計(jì)算概率值,本題屬于超幾分布概率模型.7總體由編號(hào)為01,02,19,20的20個(gè)個(gè)體組成利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法從隨機(jī)數(shù)表的第1行第4列數(shù)由左到右由上到下開(kāi)始讀取,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為_(kāi)第1行 78 16 65
4、 71 02 30 60 14 01 02 40 60 90 28 01 98第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81【答案】02;【解析】第1行第4列數(shù)是6,由左到右進(jìn)行讀取10,06,01,09,02.【詳解】第1行第4列數(shù)是6,由左到右進(jìn)行讀取10,06,01,09,02,所以第5個(gè)個(gè)體的編號(hào)為02.【點(diǎn)睛】隨機(jī)數(shù)表中如果個(gè)體編號(hào)是2位數(shù),則從規(guī)定的地方數(shù)起,是每次數(shù)兩位數(shù),如果碰到超出編號(hào)范圍,則不選;如果碰到選過(guò)的,也不選.8連續(xù)拋擲同一顆骰子3次,則3次擲得的點(diǎn)數(shù)之和為9的概率是_【答案】;【解析】利用分步計(jì)數(shù)原理,連續(xù)
5、拋擲同一顆骰子3次,則總共有:6×6×6=216種情況,再列出滿足條件的所有基本事件,利用古典概型的計(jì)算公式計(jì)算可得概率.【詳解】每一次拋擲骰子都有1,2,3,4,5,6,六種情況,由分步計(jì)數(shù)原理:連續(xù)拋擲同一顆骰子3次,則總共有:6×6×6=216種情況,則3次擲得的點(diǎn)數(shù)之和為9的基本事件為25種情況即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1
6、),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25個(gè)基本事件,所以.【點(diǎn)睛】本題考查分步計(jì)數(shù)原理和古典概型概率計(jì)算,計(jì)數(shù)過(guò)程中如果前兩個(gè)數(shù)固定,則第三個(gè)數(shù)也相應(yīng)固定.9曲線繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到的曲線的方程為_(kāi)【答案】;【解析】曲線繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn),這個(gè)變換可分成兩個(gè)步驟:先是關(guān)于直線對(duì)稱,再關(guān)于軸對(duì)稱得到.【詳解】繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)90°等同于先關(guān)于直線翻折,再關(guān)于軸翻折,關(guān)于直線翻折得到,再關(guān)于軸翻折得到.【點(diǎn)睛】本題表面考查旋轉(zhuǎn)變換,而實(shí)質(zhì)考查的是兩次的軸對(duì)稱變換,
7、要注意指數(shù)函數(shù)與同底數(shù)的對(duì)數(shù)函數(shù)關(guān)于直線對(duì)稱.10計(jì)算_【答案】;【解析】根據(jù)階乘的定義:,計(jì)算得到答案.【詳解】.【點(diǎn)睛】本題考查階乘的計(jì)算,考查基本的運(yùn)算求解能力,要求計(jì)算過(guò)程耐心、細(xì)心,才不會(huì)出錯(cuò).11甲、乙兩名運(yùn)動(dòng)員進(jìn)行乒乓球單打比賽,已知每一局甲勝的概率為比賽采用“五局三勝(即有一方先勝3局即獲勝,比賽結(jié)束)制”,則甲獲勝的概率是_【答案】;【解析】利用相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算求解,甲獲勝,則比賽打了5局,且最后一局甲勝利.【詳解】由題意知,前四局甲、乙每人分別勝2局,則甲獲勝的概率是:.【點(diǎn)睛】本題考查相互獨(dú)立事件同時(shí)發(fā)生的概率,屬于基礎(chǔ)題.12已知,n,滿足,則所有數(shù)對(duì)的個(gè)
8、數(shù)是_【答案】4;【解析】因?yàn)椋?,所以,因?yàn)橐阎?,n,所以,繼而討論可得結(jié)果。【詳解】因?yàn)?,即,所以,因?yàn)橐阎琻,所以,又,故有以下情況:若,得:,若得:,若得:,若得:,即的值共4個(gè)?!军c(diǎn)睛】本題考查數(shù)論中的計(jì)數(shù)問(wèn)題,是創(chuàng)新型問(wèn)題,對(duì)綜合能力的考查要求較高。13觀察下列算式:,則_【答案】142;【解析】觀察已知等式的規(guī)律,可猜想第行左邊第一個(gè)奇數(shù)為后續(xù)奇數(shù)依次為:由第行第一個(gè)數(shù)為,即:,解得:,可得:,即可得解.【詳解】第行等號(hào)左邊第一個(gè)加數(shù)為第個(gè)奇數(shù),即,于是第一個(gè)加數(shù)為,所以第個(gè)等式為,【點(diǎn)睛】本題主要考查歸納與推理,猜想第行左邊第一個(gè)奇數(shù)為進(jìn)而后續(xù)奇數(shù)依次為:是解題的關(guān)鍵.14集
9、合,滿足,若,中的元素個(gè)數(shù)分別不是,中的元素,則滿足條件的集合的個(gè)數(shù)為_(kāi)(用數(shù)字作答)【答案】44【解析】分別就集合中含有共8個(gè)元素逐一分析,求和后得答案.【詳解】含1元,含7元,則,于是,共;同理:含2元,含6元,共6個(gè);含3元,含5元,共15個(gè);含5元,含3元,共15個(gè);含6元,含2元,共6個(gè);含7元,含1元,共1個(gè)【點(diǎn)睛】本題主要考查排列組合的應(yīng)用,根據(jù)元素關(guān)系分別進(jìn)行討論是解決本題的關(guān)鍵.二、解答題15已知直線:(為參數(shù))和圓的極坐標(biāo)方程:(1)分別求直線和圓的普通方程并判斷直線與圓的位置關(guān)系;(2)已知點(diǎn),若直線與圓相交于,兩點(diǎn),求的值【答案】(1)直線,圓,直線和圓相交(2)【解析
10、】(1)消去直線參數(shù)方程中參數(shù),可得直線的普通方程,把兩邊同時(shí)乘以,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程,再由圓心到直線的距離與圓的半徑的關(guān)系判斷直線和圓的位置關(guān)系;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,化為關(guān)于的一元二次方程,利用參數(shù)的幾何意義及根與系數(shù)的關(guān)系,求的值.【詳解】解:(1)由:(為參數(shù)),消去參數(shù)得由得,因,則圓的普通方程為 則圓心到直線的距離,故直線和圓相交 (2)設(shè),將直線的參數(shù)方程代入得, 因直線過(guò)點(diǎn),且點(diǎn)在圓內(nèi),則由的幾何意義知【點(diǎn)睛】本題考查簡(jiǎn)單曲線的極坐標(biāo)方程,考查參數(shù)方程和普通方程的互化,關(guān)鍵是直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,屬于中檔題
11、.16已知,r,矩陣的兩個(gè)特征向量,(1)求矩陣的逆矩陣;(2)若,求【答案】(1)(2)【解析】(1)由矩陣的特征向量求法,解方程可得,再由矩陣的逆矩陣可得所求;(2)求得,再由矩陣的多次變換,可得所求.【詳解】解:(1)設(shè)矩陣的特征向量對(duì)應(yīng)的特征值為,特征向量對(duì)應(yīng)的特征值為,則 ,則 (2)因, 所以【點(diǎn)睛】本題考查矩陣的特征值和特征向量,考查矩陣的逆矩陣,以及矩陣的變換,考查運(yùn)算求解能力,屬于中檔題.17羽毛球比賽中采用每球得分制,即每回合中勝方得1分,負(fù)方得0分,每回合由上回合的勝方發(fā)球設(shè)在甲、乙的比賽中,每回合發(fā)球,發(fā)球方得1分的概率為0.6,各回合發(fā)球的勝負(fù)結(jié)果相互獨(dú)立若在一局比賽
12、中,甲先發(fā)球(1)求比賽進(jìn)行3個(gè)回合后,甲與乙的比分為的概率;(2)表示3個(gè)回合后乙的得分,求的分布列與數(shù)學(xué)期望【答案】(1)0.336(2)見(jiàn)解析【解析】(1)記“第回合發(fā)球,甲勝”為事件,=1,2,3,且事件相互獨(dú)立,設(shè)“3個(gè)回合后,甲與乙比分為2比1”為事件,由互斥事件概率加法公式和相互獨(dú)立事件乘法公式求出比賽進(jìn)行3個(gè)回合后,甲與乙的比分為2比1的概率;(2)的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此求出的分布列和數(shù)學(xué)期望.【詳解】解:記“第回合發(fā)球,甲勝”為事件,=1,2,3,且事件相互獨(dú)立(1)記“3個(gè)回合后,甲與乙比分為2比1”為事件,則事件發(fā)生表示事件或或發(fā)生,且,互斥
13、 又, 由互斥事件概率加法公式可得答:3個(gè)回合后,甲與乙比分為2比1的概率為0.336 (2)因表示3個(gè)回合后乙的得分,則0,1,2,3, 所以,隨機(jī)變量的概率分布列為01230.2160.3360.3040.144故隨機(jī)變量的數(shù)學(xué)期望為=答:的數(shù)學(xué)期望為1.376【點(diǎn)睛】本題考查概率的求法、離散型隨機(jī)變量的分布列、數(shù)學(xué)期望等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.18已知數(shù)列滿足:,(r,n)(1)若,求證:;(2)若,求證:【答案】(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)用數(shù)學(xué)歸納法證明結(jié)論即可;(2)因?yàn)椋╪),則,然后用反證法證明當(dāng)時(shí)有矛盾,所以原不等式成立即可.【詳解】(1)當(dāng)時(shí),下面用
14、數(shù)學(xué)歸納法證明:當(dāng)時(shí),結(jié)論成立; 假設(shè)當(dāng)時(shí),有成立,則當(dāng)時(shí),因,所以時(shí)結(jié)論也成立綜合可知(n)成立 (2)因?yàn)椋╪),則, 若,則當(dāng)時(shí),與矛盾所以【點(diǎn)睛】本題考查數(shù)列的遞推公式、數(shù)學(xué)歸納法證明、反證法等知識(shí),屬于中檔題.19如圖,已知點(diǎn)是橢圓上的任意一點(diǎn),直線與橢圓交于,兩點(diǎn),直線,的斜率都存在(1)若直線過(guò)原點(diǎn),求證:為定值;(2)若直線不過(guò)原點(diǎn),且,試探究是否為定值【答案】(1)見(jiàn)解析(2),詳見(jiàn)解析【解析】(1)設(shè),由橢圓對(duì)稱性得,把點(diǎn),的坐標(biāo)都代入橢圓得到兩個(gè)方程,再相減,得到兩直線斜率乘積的表達(dá)式;(2)設(shè),則,由得:,進(jìn)而得到直線的方程,再與橢圓方程聯(lián)立,利用韋達(dá)定理得到坐標(biāo)之間的關(guān)系,最后整體代入消元,得到為定值.【詳解】(1)當(dāng)過(guò)原點(diǎn)時(shí),設(shè),由橢圓對(duì)稱性得,則 ,都在橢圓上,兩式相減得:,即故 (2)設(shè),則,設(shè)直線的方程為(), 聯(lián)立方程組消去,整理得在橢圓上,上式可化為, ,;(定值)【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,對(duì)綜合運(yùn)算能力要求較高,對(duì)坐標(biāo)法進(jìn)行深入的考查,要求在運(yùn)算過(guò)程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年離婚協(xié)議模板:協(xié)調(diào)夫妻財(cái)產(chǎn)及子女撫養(yǎng)事宜3篇
- 二零二五年度農(nóng)業(yè)承包勞務(wù)合作協(xié)議書(shū)3篇
- 2024年中國(guó)防盜鎖鎖頭市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國(guó)長(zhǎng)頸鹿標(biāo)本市場(chǎng)調(diào)查研究報(bào)告
- 2024年度知識(shí)產(chǎn)權(quán)質(zhì)押擔(dān)??萍佳邪l(fā)合同模板3篇
- 2025年度版權(quán)買(mǎi)賣(mài)合同內(nèi)容修訂3篇
- 2024版地磅購(gòu)置及質(zhì)保期合同范本3篇
- 2025年度物業(yè)買(mǎi)賣(mài)合同綠色建筑認(rèn)證要求3篇
- 2024年離婚訴訟流程指導(dǎo)合同版B版
- 2025版餐飲店消防安全管理合同范本3篇
- 傳承傳統(tǒng)文化教育教案(3篇模板)
- QBT 2460-1999 聚碳酸酯(PC)飲用水罐
- 2024新《公司法》修訂重點(diǎn)解讀課件
- 《電子吊秤校準(zhǔn)規(guī)范》公示件
- 《跟上兔子》繪本四年級(jí)第1季Can-I-Play-with-You教學(xué)課件
- 手術(shù)室敏感指標(biāo)構(gòu)建
- 書(shū)法創(chuàng)作設(shè)計(jì)方案
- MOOC 軟件工程概論-北京聯(lián)合大學(xué) 中國(guó)大學(xué)慕課答案
- 2023年鐵路工務(wù)安全規(guī)則正文
- 生態(tài)安全與環(huán)境風(fēng)險(xiǎn)評(píng)估預(yù)警機(jī)制
- MOOC 傳熱學(xué)-西安交通大學(xué) 中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論