




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、-作者xxxx-日期xxxx高中數(shù)學(xué)高考導(dǎo)數(shù)題型【精品文檔】導(dǎo)數(shù)題型分析及解題方法一、考試內(nèi)容導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,幾種常見函數(shù)的導(dǎo)數(shù);兩個(gè)函數(shù)的和、差、基本導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。二、熱點(diǎn)題型分析題型一:利用導(dǎo)數(shù)幾何意義求切線方程1曲線在點(diǎn)處的切線方程是 2若曲線在P點(diǎn)處的切線平行于直線,則P點(diǎn)的坐標(biāo)為 (1,0) 3若曲線的一條切線與直線垂直,則的方程為 4求下列直線的方程: (1)曲線在P(-1,1)處的切線; (2)曲線過點(diǎn)P(3,5)的切線;解:(1)(2)題型二:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值、最值1已知函數(shù)的切線方程為y=3x+1 (
2、)若函數(shù)處有極值,求的表達(dá)式; ()在()的條件下,求函數(shù)在3,1上的最大值; ()若函數(shù)在區(qū)間2,1上單調(diào)遞增,求實(shí)數(shù)b的取值范圍 解:(1) (2)在3,1上最大值是13。 (3)y=f(x)在2,1上單調(diào)遞增,又由知2a+b=0。 依題意在2,1上恒有0,即 當(dāng);當(dāng);當(dāng) 綜上所述,參數(shù)b的取值范圍是2已知三次函數(shù)在和時(shí)取極值,且(1) 求函數(shù)的表達(dá)式;(2) 求函數(shù)的單調(diào)區(qū)間和極值;解:(1) (2) 當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù);在區(qū)間上是減函數(shù);在區(qū)間上是增函數(shù)函數(shù)的極大值是,極小值是3設(shè)函數(shù)(1)若的圖象與直線相切,切點(diǎn)橫坐標(biāo)為,且在處取極值,求實(shí)數(shù) 的值;(2)當(dāng)b=1時(shí),試證明:
3、不論a取何實(shí)數(shù),函數(shù)總有兩個(gè)不同的極值點(diǎn) 解:(1)a=1,b=1題型三:利用導(dǎo)數(shù)研究函數(shù)的圖象1 f(x)的導(dǎo)函數(shù) 的圖象如右圖所示,則f(x)的圖象只可能是( D )(A) (B) (C) (D)2函數(shù)( A )xyo4-424-42-2-2xyo4-424-42-2-2xyy4o-424-42-2-26666yx-4-2o42243方程 ( B ) A、0 B、1 C、2 D、3題型四:利用單調(diào)性、極值、最值情況,求參數(shù)取值范圍1設(shè)函數(shù) (1)求函數(shù)的單調(diào)區(qū)間、極值.(2)若當(dāng)時(shí),恒有,試確定a的取值范圍.解:(1)在(a,3a)上單調(diào)遞增,在(-,a)和(3a,+)上單調(diào)遞減時(shí),時(shí),
4、(2),對(duì)稱軸,在a+1,a+2上單調(diào)遞減 ,依題, 即解得,又 a的取值范圍是2已知函數(shù)f(x)x3ax2bxc在x與x1時(shí)都取得極值(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間(2)若對(duì)xÎ1,2,不等式f(x)<c2恒成立,求c的取值范圍。解:(1)函數(shù)f(x)的遞增區(qū)間是(¥,)與(1,¥),遞減區(qū)間是(,1)(2)f(x)x3x22xc,xÎ1,2,當(dāng)x時(shí),f(x)c為極大值,而f(2)2c,則f(2)2c為最大值。要使f(x)<c2(xÎ1,2)恒成立,只需c2>f(2)2c,解得c<1或c>2題型五:導(dǎo)
5、數(shù)與不等式的綜合1設(shè)在上是單調(diào)函數(shù).(1)求實(shí)數(shù)的取值范圍;(2)設(shè)1,1,且,求證:.解:(1) 若在上是單調(diào)遞減函數(shù),則須這樣的實(shí)數(shù)a不存在.故在上不可能是單調(diào)遞減函數(shù).若在上是單調(diào)遞增函數(shù),則,由于.從而0<a3.(2)方法1、可知在上只能為單調(diào)增函數(shù). 若1,則 若1矛盾,故只有成立.方法2:設(shè),兩式相減得 1,u1,2已知為實(shí)數(shù),函數(shù)(1)若函數(shù)的圖象上有與軸平行的切線,求的取值范圍(2)若,()求函數(shù)的單調(diào)區(qū)間()證明對(duì)任意的,不等式恒成立解:,函數(shù)的圖象有與軸平行的切線,有實(shí)數(shù)解 ,所以的取值范圍是,由或;由的單調(diào)遞增區(qū)間是;單調(diào)減區(qū)間為易知的極大值為,的極小值為,又在上的最大值,最小值對(duì)任意,恒有題型六:導(dǎo)數(shù)在實(shí)際中的應(yīng)用1請(qǐng)您設(shè)計(jì)一個(gè)帳篷。它下部的形狀是高為1m的正六棱柱,上部的形狀是側(cè)棱長(zhǎng)為3m的正六棱錐(如右圖所示)。試問當(dāng)帳篷的頂點(diǎn)O到底面中心的距離為多少時(shí),帳篷的體積最大?當(dāng)OO1為時(shí),帳篷的體積最大,最大體積為。2統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米。(I)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?(II)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 少先隊(duì)輔導(dǎo)員培訓(xùn)方案
- 小班小球快跑課件
- 護(hù)理上門服務(wù)方案
- 2025年銷售公司年度工作方案演講稿
- 2025年學(xué)校一班級(jí)班務(wù)工作方案
- 2025年典型的婚禮策劃方案范本
- 家裝行業(yè)貸款風(fēng)險(xiǎn)分析
- 2025年財(cái)務(wù)部門個(gè)人工作方案和目標(biāo)參考
- 2025年幼兒園父親節(jié)活動(dòng)方案模板
- 服務(wù)行業(yè)年終總結(jié)
- 組建生物質(zhì)燃料公司方案
- 天才在左瘋子在右課件
- 鐵路轉(zhuǎn)轍機(jī) ZDJ9型電動(dòng)轉(zhuǎn)轍機(jī)認(rèn)知
- 第四章礦井通風(fēng)動(dòng)力
- 2021年4月四川省自考06093人力資源開發(fā)與管理試題及答案含解析
- 聯(lián)社監(jiān)事長(zhǎng)整改措施
- 冠心病健康教育完整版
- 2021年新高考英語讀后續(xù)寫母親節(jié)課件高考英語一輪復(fù)習(xí)
- 《關(guān)于“人工智能”》非連續(xù)文本閱讀練習(xí)及答案
- 鋼平臺(tái)鋪板計(jì)算excel(可當(dāng)計(jì)算書)
- 《強(qiáng)化學(xué)習(xí)理論與應(yīng)用》環(huán)境
評(píng)論
0/150
提交評(píng)論