版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、如下圖所示三角形薄板,按三結(jié)點三角形單元劃分后,對于與局部編碼ijm對應(yīng)的整體編碼,以下敘述正確的是( D )。 I單元的整體編碼為162 II單元的整體編碼為426 II單元的整體編碼為246 III單元的整體編碼為243 IV單元的整體編碼為564A. B. C. D. 一、填空題1、彈性力學(xué)研究彈性體由于受外力作用、邊界約束或溫度改變等原因而發(fā)生的應(yīng)力、形變和位移。2、在彈性力學(xué)中規(guī)定,線應(yīng)變以伸長時為正,縮短時為負,與正應(yīng)力的正負號規(guī)定相適應(yīng)。3、在彈性力學(xué)中規(guī)定,切應(yīng)變以直角變小時為正,變大時為負,與切應(yīng)力的正負號規(guī)定相適應(yīng)。4、物體受外力以后,其內(nèi)部將發(fā)生內(nèi)力,它的集度稱為應(yīng)力。與
2、物體的形變和材料強度直接有關(guān)的,是應(yīng)力在其作用截面的法線方向和切線方向的分量,也就是正應(yīng)力和切應(yīng)力。應(yīng)力及其分量的量綱是L-1MT-2。5、彈性力學(xué)的基本假定為連續(xù)性、完全彈性、均勻性、各向同性。6、平面問題分為平面應(yīng)力問題和平面應(yīng)變問題。7、已知一點處的應(yīng)力分量MPa,MPa, MPa,則主應(yīng)力150MPa,0MPa,。8、已知一點處的應(yīng)力分量, MPa,MPa, MPa,則主應(yīng)力512 MPa,-312 MPa,-37°57。9、已知一點處的應(yīng)力分量,MPa,MPa, MPa,則主應(yīng)力1052 MPa,-2052 MPa,-82°32。10、在彈性力學(xué)里分析問題,要考慮
3、靜力學(xué)、幾何學(xué)和物理學(xué)三方面條件,分別建立三套方程。11、表示應(yīng)力分量與體力分量之間關(guān)系的方程為平衡微分方程。12、邊界條件表示邊界上位移與約束,或應(yīng)力與面力之間的關(guān)系式。分為位移邊界條件、應(yīng)力邊界條件和混合邊界條件。13、按應(yīng)力求解平面問題時常采用逆解法和半逆解法。14、有限單元法首先將連續(xù)體變換成為離散化結(jié)構(gòu),然后再用結(jié)構(gòu)力學(xué)位移法進行求解。其具體步驟分為單元分析和整體分析兩部分。15、每個單元的位移一般總是包含著兩部分:一部分是由本單元的形變引起的,另一部分是由于其他單元發(fā)生了形變而連帶引起的。16、每個單元的應(yīng)變一般總是包含著兩部分:一部分是與該單元中各點的位置坐標(biāo)有關(guān)的,是各點不相同
4、的,即所謂變量應(yīng)變;另一部分是與位置坐標(biāo)無關(guān)的,是各點相同的,即所謂常量應(yīng)變。17、為了能從有限單元法得出正確的解答,位移模式必須能反映單元的剛體位移和常量應(yīng)變,還應(yīng)當(dāng)盡可能反映相鄰單元的位移連續(xù)性。18、為了使得單元內(nèi)部的位移保持連續(xù),必須把位移模式取為坐標(biāo)的單值連續(xù)函數(shù),為了使得相鄰單元的位移保持連續(xù),就不僅要使它們在公共結(jié)點處具有相同的位移時,也能在整個公共邊界上具有相同的位移。19、在有限單元法中,單元的形函數(shù)Ni在i結(jié)點Ni=1;在其他結(jié)點Ni=0及Ni=1。20、為了提高有限單元法分析的精度,一般可以采用兩種方法:一是將單元的尺寸減小,以便較好地反映位移和應(yīng)力變化情況;二是采用包含
5、更高次項的位移模式,使位移和應(yīng)力的精度提高。1. 邊界條件表示在邊界上 位移 與 約束 ,或 應(yīng)力 與 面力 之間的關(guān)系式,它可以分為 位移 邊界條件、 應(yīng)力 邊界條件和 混合 邊界條件。2. 體力是作用于物體體積內(nèi)的力,以單位體積力來度量,體力分量的量綱為 L-2MT-2 ;面力是作用于物體表面上力,以單位表面面積上的力度量,面力的量綱為 L-1MT-2 ;體力和面力符號的規(guī)定為以 沿坐標(biāo)軸正向 為正,屬 外 力;應(yīng)力是作用于截面單位面積的力,屬 內(nèi) 力,應(yīng)力的量綱為 L-1MT-2 ,應(yīng)力符號的規(guī)定為: 正面正向、負面負向為正,反之為負 。3. 小孔口應(yīng)力集中現(xiàn)象中有兩個特點:一是 孔附近
6、的應(yīng)力高度集中 ,即孔附近的應(yīng)力遠大于遠處的應(yīng)力,或遠大于無孔時的應(yīng)力。二是 應(yīng)力集中的局部性 ,由于孔口存在而引起的應(yīng)力擾動范圍主要集中在距孔邊1.5倍孔口尺寸的范圍內(nèi)。4. 彈性力學(xué)中,正面是指 外法向方向沿坐標(biāo)軸正向 的面,負面是指 外法向方向沿坐標(biāo)軸負向 的面 。5. 利用有限單元法求解彈性力學(xué)問題時,簡單來說包含 結(jié)構(gòu)離散化 、 單元分析 、 整體分析 三個主要步驟。1最小勢能原理等價于彈性力學(xué)基本方程中: 平衡微分方程 , 應(yīng)力邊界條件 。2一組可能的應(yīng)力分量應(yīng)滿足: 平衡微分方程 ,相容方程(變形協(xié)調(diào)條件) 。3等截面直桿扭轉(zhuǎn)問題中, 的物理意義是 桿端截面上剪應(yīng)力對轉(zhuǎn)軸的矩等于
7、桿截面內(nèi)的扭矩M 。4平面問題的應(yīng)力函數(shù)解法中,Airy應(yīng)力函數(shù)在邊界上值的物理意義為 邊界上某一點(基準(zhǔn)點)到任一點外力的矩 。5彈性力學(xué)平衡微分方程、幾何方程的張量表示為: ,。二、判斷題(請在正確命題后的括號內(nèi)打“”,在錯誤命題后的括號內(nèi)打“×”)1、連續(xù)性假定是指整個物體的體積都被組成這個物體的介質(zhì)所填滿,不留下任何空隙。()2、均勻性假定是指整個物體的體積都被組成這個物體的介質(zhì)所填滿,不留下任何空隙。(×)3、連續(xù)性假定是指整個物體是由同一材料組成的。(×)4、平面應(yīng)力問題與平面應(yīng)變問題的物理方程是完全相同的。(×)5、如果某一問題中,只存在平
8、面應(yīng)力分量,且它們不沿z方向變化,僅為x,y的函數(shù),此問題是平面應(yīng)力問題。()6、如果某一問題中,只存在平面應(yīng)變分量,且它們不沿z方向變化,僅為x,y的函數(shù),此問題是平面應(yīng)變問題。()7、表示應(yīng)力分量與面力分量之間關(guān)系的方程為平衡微分方程。(×)8、表示位移分量與應(yīng)力分量之間關(guān)系的方程為物理方程。(×)9、當(dāng)物體的形變分量完全確定時,位移分量卻不能完全確定。()10、當(dāng)物體的位移分量完全確定時,形變分量即完全確定。()11、按應(yīng)力求解平面問題時常采用位移法和應(yīng)力法。(×)12、按應(yīng)力求解平面問題,最后可以歸納為求解一個應(yīng)力函數(shù)。(×)13、在有限單元法中
9、,結(jié)點力是指單元對結(jié)點的作用力。(×)14、在有限單元法中,結(jié)點力是指結(jié)點對單元的作用力。()15、在平面三結(jié)點三角形單元的公共邊界上應(yīng)變和應(yīng)力均有突變。( )三、簡答題1、簡述材料力學(xué)和彈性力學(xué)在研究對象、研究方法方面的異同點。在研究對象方面,材料力學(xué)基本上只研究桿狀構(gòu)件,也就是長度遠大于高度和寬度的構(gòu)件;而彈性力學(xué)除了對桿狀構(gòu)件作進一步的、較精確的分析外,還對非桿狀結(jié)構(gòu),例如板和殼,以及擋土墻、堤壩、地基等實體結(jié)構(gòu)加以研究。在研究方法方面,材料力學(xué)研究桿狀構(gòu)件,除了從靜力學(xué)、幾何學(xué)、物理學(xué)三方面進行分析以外,大都引用了一些關(guān)于構(gòu)件的形變狀態(tài)或應(yīng)力分布的假定,這就大簡化了數(shù)學(xué)推演,
10、但是,得出的解答往往是近似的。彈性力學(xué)研究桿狀構(gòu)件,一般都不必引用那些假定,因而得出的結(jié)果就比較精確,并且可以用來校核材料力學(xué)里得出的近似解答。2、簡述彈性力學(xué)的研究方法。答:在彈性體區(qū)域內(nèi)部,考慮靜力學(xué)、幾何學(xué)和物理學(xué)三方面條件,分別建立三套方程。即根據(jù)微分體的平衡條件,建立平衡微分方程;根據(jù)微分線段上形變與位移之間的幾何關(guān)系,建立幾何方程;根據(jù)應(yīng)力與形變之間的物理關(guān)系,建立物理方程。此外,在彈性體的邊界上還要建立邊界條件。在給定面力的邊界上,根據(jù)邊界上微分體的平衡條件,建立應(yīng)力邊界條件;在給定約束的邊界上,根據(jù)邊界上的約束條件建立位移邊界條件。求解彈性力學(xué)問題,即在邊界條件下根據(jù)平衡微分方
11、程、幾何方程、物理方程求解應(yīng)力分量、形變分量和位移分量。3、彈性力學(xué)中應(yīng)力如何表示?正負如何規(guī)定?答:彈性力學(xué)中正應(yīng)力用表示,并加上一個下標(biāo)字母,表明這個正應(yīng)力的作用面與作用方向;切應(yīng)力用表示,并加上兩個下標(biāo)字母,前一個字母表明作用面垂直于哪一個坐標(biāo)軸,后一個字母表明作用方向沿著哪一個坐標(biāo)軸。并規(guī)定作用在正面上的應(yīng)力以沿坐標(biāo)軸正方向為正,沿坐標(biāo)軸負方向為負。相反,作用在負面上的應(yīng)力以沿坐標(biāo)軸負方向為正,沿坐標(biāo)軸正方向為負。4、簡述平面應(yīng)力問題與平面應(yīng)變問題的區(qū)別。答:平面應(yīng)力問題是指很薄的等厚度薄板,只在板邊上受有平行于板面并且不沿厚度變化的面力,同時,體力也平行于板面并且不沿厚度變化。對應(yīng)的
12、應(yīng)力分量只有,。而平面應(yīng)變問題是指很長的柱形體,在柱面上受有平行于橫截面并且不沿長度變化的面力,同時體力也平行于橫截面并且不沿長度變化,對應(yīng)的位移分量只有u和v5、簡述圣維南原理。 如果把物體的一小部分邊界上的面力,變換為分布不同但靜力等效的面力(主矢量相同,對于同一點的主矩也相同),那么,近處的應(yīng)力分布將有顯著的改變,但是遠處所受的影響可以不計。6、簡述按應(yīng)力求解平面問題時的逆解法。答:所謂逆解法,就是先設(shè)定各種形式的、滿足相容方程的應(yīng)力函數(shù);并由應(yīng)力分量與應(yīng)力函數(shù)之間的關(guān)系求得應(yīng)力分量;然后再根據(jù)應(yīng)力邊界條件和彈性體的邊界形狀,看這些應(yīng)力分量對應(yīng)于邊界上什么樣的面力,從而可以得知所選取的應(yīng)
13、力函數(shù)可以解決的問題。7、以三節(jié)點三角形單元為例,簡述有限單元法求解離散化結(jié)構(gòu)的具體步驟。(1)取三角形單元的結(jié)點位移為基本未知量。(2)應(yīng)用插值公式,由單元的結(jié)點位移求出單元的位移函數(shù)。(3)應(yīng)用幾何方程,由單元的位移函數(shù)求出單元的應(yīng)變。(4)應(yīng)用物理方程,由單元的應(yīng)變求出單元的應(yīng)力。(5)應(yīng)用虛功方程,由單元的應(yīng)力出單元的結(jié)點力。(6)應(yīng)用虛功方程,將單元中的各種外力荷載向結(jié)點移置,求出單元的結(jié)點荷載。(7)列出各結(jié)點的平衡方程,組成整個結(jié)構(gòu)的平衡方程組。8、為了保證有限單元法解答的收斂性,位移模式應(yīng)滿足哪些條件?答:為了保證有限單元法解答的收斂性,位移模式應(yīng)滿足下列條件:(1)位移模式必
14、須能反映單元的剛體位移;(2)位移模式必須能反映單元的常量應(yīng)變;(3)位移模式應(yīng)盡可能反映位移的連續(xù)性。9、在有限單元法中,為什么要求位移模式必須能反映單元的剛體位移?每個單元的位移一般總是包含著兩部分:一部分是由本單元的形變引起的,另一部分是本單元的形變無關(guān)的,即剛體位移,它是由于其他單元發(fā)生了形變而連帶引起的。甚至在彈性體的某些部位,例如在靠近懸臂梁的自由端處,單元的形變很小,單元的位移主要是由于其他單元發(fā)生形變而引起的剛體位移。因此,為了正確反映單元的位移形態(tài),位移模式必須能反映該單元的剛體位移。10、在有限單元法中,為什么要求位移模式必須能反映單元的常量應(yīng)變?答:每個單元的應(yīng)變一般總是
15、包含著兩部分:一部分是與該單元中各點的位置坐標(biāo)有關(guān)的,是各點不相同的,即所謂變量應(yīng)變;另一部分是與位置坐標(biāo)無關(guān)的,是各點相同的,即所謂常量應(yīng)變。而且,當(dāng)單元的尺寸較小時,單元中各點的應(yīng)變趨于相等,也就是單元的應(yīng)變趨于均勻,因而常量應(yīng)變就成為應(yīng)變的主要部分。因此,為了正確反映單元的形變狀態(tài),位移模式必須能反映該單元的常量應(yīng)變。11、在平面三結(jié)點三角形單元中,能否選取如下的位移模式并說明理由:(1),(2),答:(1)不能采用。因為位移模式?jīng)]有反映全部的剛體位移和常量應(yīng)變項;對坐標(biāo)x,y不對等;在單元邊界上的連續(xù)性條件也未能完全滿足。(2) 不能采用。因為,位移模式?jīng)]有反映剛體位移和常量應(yīng)變項;在
16、單元邊界上的連續(xù)性條件也不滿足。1試簡述力學(xué)中的圣維南原理,并說明它在彈性力學(xué)分析中的作用。圣維南原理:如果物體的一小部分邊界上的面力變換為分布不同但靜力等效的面力(主矢與主矩相同),則近處的應(yīng)力分布將有顯著的改變,但遠處的應(yīng)力所受影響可以忽略不計。作用:(1)將次要邊界上復(fù)雜的面力(集中力、集中力偶等)作分布的面力代替。(2)將次要的位移邊界條件轉(zhuǎn)化為應(yīng)力邊界條件處理。2圖示兩楔形體,試分別用直角坐標(biāo)和極坐標(biāo)寫出其應(yīng)力函數(shù)的分離變量形式。題二(2)圖(a) (b)3圖示矩形彈性薄板,沿對角線方向作用一對拉力P,板的幾何尺寸如圖,材料的彈性模量E、泊松比 m 已知。試求薄板面積的改變量。 題二
17、(3)圖設(shè)當(dāng)各邊界受均布壓力q時,兩力作用點的相對位移為。由得,設(shè)板在力P作用下的面積改變?yōu)?,由功的互等定理有:將代入得:顯然,與板的形狀無關(guān),僅與E、l有關(guān)。4圖示曲桿,在邊界上作用有均布拉應(yīng)力q,在自由端作用有水平集中力P。試寫出其邊界條件(除固定端外)。題二(4)圖(1);(2)(3) 5試簡述拉甫(Love)位移函數(shù)法、伽遼金(Galerkin)位移函數(shù)法求解空間彈性力學(xué)問題的基本思想,并指出各自的適用性Love、Galerkin位移函數(shù)法求解空間彈性力學(xué)問題的基本思想:(1)變求多個位移函數(shù)或為求一些特殊函數(shù),如調(diào)和函數(shù)、重調(diào)和函數(shù)。(2)變求多個函數(shù)為求單個函數(shù)(特殊函數(shù))。適用性
18、:Love位移函數(shù)法適用于求解軸對稱的空間問題; Galerkin位移函數(shù)法適用于求解非軸對稱的空間問題。1. (8分)彈性力學(xué)中引用了哪五個基本假定?五個基本假定在建立彈性力學(xué)基本方程時有什么用途?答:彈性力學(xué)中主要引用的五個基本假定及各假定用途為:(答出標(biāo)注的內(nèi)容即可給滿分) 1)連續(xù)性假定:引用這一假定后,物體中的應(yīng)力、應(yīng)變和位移等物理量就可看成是連續(xù)的,因此,建立彈性力學(xué)的基本方程時就可以用坐標(biāo)的連續(xù)函數(shù)來表示他們的變化規(guī)律。2)完全彈性假定:這一假定包含應(yīng)力與應(yīng)變成正比的含義,亦即二者呈線性關(guān)系,復(fù)合胡克定律,從而使物理方程成為線性的方程。3)均勻性假定:在該假定下,所研究的物體內(nèi)部
19、各點的物理性質(zhì)顯然都是相同的。因此,反應(yīng)這些物理性質(zhì)的彈性常數(shù)(如彈性模量E和泊松比等)就不隨位置坐標(biāo)而變化。4)各向同性假定:各向同性是指物體的物理性質(zhì)在各個方向上都是相同的,也就是說,物體的彈性常數(shù)也不隨方向變化。5)小變形假定:研究物體受力后的平衡問題時,不用考慮物體尺寸的改變,而仍然按照原來的尺寸和形狀進行計算。同時,在研究物體的變形和位移時,可以將它們的二次冪或乘積略去不計,使得彈性力學(xué)的微分方程都簡化為線性微分方程。2. (8分)彈性力學(xué)平面問題包括哪兩類問題?分別對應(yīng)哪類彈性體?兩類平面問題各有哪些特征?答:彈性力學(xué)平面問題包括平面應(yīng)力問題和平面應(yīng)變問題兩類,兩類問題分別對應(yīng)的彈
20、性體和特征分別為: 平面應(yīng)力問題:所對應(yīng)的彈性體主要為等厚薄板,其特征是:面力、體力的作用面平行于xy平面,外力沿板厚均勻分布,只有平面應(yīng)力分量,存在,且僅為x,y的函數(shù)。 平面應(yīng)變問題:所對應(yīng)的彈性體主要為長截面柱體,其特征為:面力、體力的作用面平行于xy平面,外力沿z軸無變化,只有平面應(yīng)變分量,存在,且僅為x,y的函數(shù)。3. (8分)常體力情況下,按應(yīng)力求解平面問題可進一步簡化為按應(yīng)力函數(shù)求解,應(yīng)力函數(shù)必須滿足哪些條件?答:(1)相容方程: (2)應(yīng)力邊界條件(假定全部為應(yīng)力邊界條件,): (3)若為多連體,還須滿足位移單值條件。1、材料各向同性的含義是什么?“各向同性”在彈性力學(xué)物理方程
21、中的表現(xiàn)是什么?(5分)答:材料的各向同性假定物體的物理性質(zhì)在各個方向上均相同。因此,物體的彈性常數(shù)不隨方向而變化。在彈性力學(xué)物理方程中,由于材料的各向同性,三個彈性常數(shù),包括彈性模量E,切變模量G和泊松系數(shù)(泊松比)都不隨方向而改變(在各個方向上相同)。2、位移法求解的條件是什么?怎樣判斷一組位移分量是否為某一問題的真實位移?(5分)答:按位移法求解時,u,v必須滿足求解域內(nèi)的平衡微分方程,位移邊界條件和應(yīng)力邊界條件。平衡微分方程、位移邊界條件和(用位移表示的)應(yīng)力邊界條件既是求解的條件,也是校核u,v是否正確的條件。3、試述彈性力學(xué)研究方法的特點,并比較材料力學(xué)、結(jié)構(gòu)力學(xué)與彈性力學(xué)在研究內(nèi)
22、容、方法等方面的異同。(12分)答:彈力研究方法:在區(qū)域V內(nèi)嚴(yán)格考慮靜力學(xué)、幾何學(xué)和物理學(xué)三方面條件,建立平衡微分方程、幾何方程和物理方程;在邊界s上考慮受力或約束條件,并在邊界條件下求解上述方程,得出較精確的解答。在研究內(nèi)容方面:材料力學(xué)研究桿件(如梁、柱和軸)的拉壓、彎曲、剪切、扭轉(zhuǎn)和組合變形等問題;結(jié)構(gòu)力學(xué)在材料力學(xué)基礎(chǔ)上研究桿系結(jié)構(gòu)(如 桁架、剛架等);彈性力學(xué)研究各種形狀的彈性體,如桿件、平面體、空間體、板殼、薄壁結(jié)構(gòu)等問題。 在研究方法方面:理力考慮整體的平衡(只決定整體的V運動狀態(tài));材力考慮有限體V的平衡,結(jié)果是近似的;彈力考慮微分體dV 的平,結(jié)果比較精確。4、常體力情況下,
23、用應(yīng)力函數(shù)表示的相容方程形式為,請問:相容方程的作用是什么?兩種解法中,哪一種解法不需要將相容方程作為基本方程?為什么?(13分)答:(1)連續(xù)體的形變分量(和應(yīng)力分量)不是相互獨立的,它們之間必須滿足相容方程,才能保證對應(yīng)的位移分量存在,相容方程也因此成為判斷彈性力學(xué)問題解答正確與否的依據(jù)之一。(2)對于按位移求解(位移法)和按應(yīng)力求解(應(yīng)力法)兩種方法,對彈性力學(xué)問題進行求解時位移法求解不需要將相容方程作為基本方程。(3)(定義)按位移求解(位移法)是以位移分量為基本未知函數(shù),從方程和邊界條件中消去應(yīng)力分量和形變分量,導(dǎo)出只含位移分量的方程和相應(yīng)的邊界條件,并由此解出應(yīng)變分量,進而再求出形
24、變分量和應(yīng)力分量。四、分析計算題1、試寫出無體力情況下平面問題的應(yīng)力分量存在的必要條件,并考慮下列平面問題的應(yīng)力分量是否可能在彈性體中存在。(1),;(2),;其中,A,B,C,D,E,F(xiàn)為常數(shù)。解:應(yīng)力分量存在的必要條件是必須滿足下列條件:(1)在區(qū)域內(nèi)的平衡微分方程;(2)在區(qū)域內(nèi)的相容方程;(3)在邊界上的應(yīng)力邊界條件;(4)對于多連體的位移單值條件。(1)此組應(yīng)力分量滿足相容方程。為了滿足平衡微分方程,必須A=-F,D=-E。此外還應(yīng)滿足應(yīng)力邊界條件。(2)為了滿足相容方程,其系數(shù)必須滿足A+B=0;為了滿足平衡微分方程,其系數(shù)必須滿足A=B=-C/2。上兩式是矛盾的,因此,此組應(yīng)力分
25、量不可能存在。2、已知應(yīng)力分量,體力不計,Q為常數(shù)。試?yán)闷胶馕⒎址匠糖笙禂?shù)C1,C2,C3。解:將所給應(yīng)力分量代入平衡微分方程得即由x,y的任意性,得由此解得,3、已知應(yīng)力分量,判斷該應(yīng)力分量是否滿足平衡微分方程和相容方程。解:將已知應(yīng)力分量,代入平衡微分方程可知,已知應(yīng)力分量,一般不滿足平衡微分方程,只有體力忽略不計時才滿足。按應(yīng)力求解平面應(yīng)力問題的相容方程:將已知應(yīng)力分量,代入上式,可知滿足相容方程。按應(yīng)力求解平面應(yīng)變問題的相容方程:將已知應(yīng)力分量,代入上式,可知滿足相容方程。4、試寫出平面問題的應(yīng)變分量存在的必要條件,并考慮下列平面問題的應(yīng)變分量是否可能存在。(1),;(2),;(3)
26、,;其中,A,B,C,D為常數(shù)。解:應(yīng)變分量存在的必要條件是滿足形變協(xié)調(diào)條件,即將以上應(yīng)變分量代入上面的形變協(xié)調(diào)方程,可知:(1)相容。(2)(1分);這組應(yīng)力分量若存在,則須滿足:B=0,2A=C。(3)0=C;這組應(yīng)力分量若存在,則須滿足:C=0,則,(1分)。5、證明應(yīng)力函數(shù)能滿足相容方程,并考察在如圖所示的矩形板和坐標(biāo)系中能解決什么問題(體力不計,)。l/2l/2h/2h/2yxO解:將應(yīng)力函數(shù)代入相容方程可知,所給應(yīng)力函數(shù)能滿足相容方程。由于不計體力,對應(yīng)的應(yīng)力分量為,對于圖示的矩形板和坐標(biāo)系,當(dāng)板內(nèi)發(fā)生上述應(yīng)力時,根據(jù)邊界條件,上下左右四個邊上的面力分別為:上邊,;下邊,;左邊,;
27、右邊,??梢姡舷聝蛇厸]有面力,而左右兩邊分別受有向左和向右的均布面力2b。因此,應(yīng)力函數(shù)能解決矩形板在x方向受均布拉力(b>0)和均布壓力(b<0)的問題。6、證明應(yīng)力函數(shù)能滿足相容方程,并考察在如圖所示的矩形板和坐標(biāo)系中能解決什么問題(體力不計,)。l/2l/2h/2h/2yxO解:將應(yīng)力函數(shù)代入相容方程可知,所給應(yīng)力函數(shù)能滿足相容方程。由于不計體力,對應(yīng)的應(yīng)力分量為,對于圖示的矩形板和坐標(biāo)系,當(dāng)板內(nèi)發(fā)生上述應(yīng)力時,根據(jù)邊界條件,上下左右四個邊上的面力分別為:上邊,;下邊,;左邊,;右邊,??梢?,在左右兩邊分別受有向下和向上的均布面力a,而在上下兩邊分別受有向右和向左的均布面力
28、a。因此,應(yīng)力函數(shù)能解決矩形板受均布剪力的問題。7、如圖所示的矩形截面的長堅柱,密度為,在一邊側(cè)面上受均布剪力,試求應(yīng)力分量。Oxybqrg 解:根據(jù)結(jié)構(gòu)的特點和受力情況,可以假定縱向纖維互不擠壓,即設(shè)。由此可知 將上式對y積分兩次,可得如下應(yīng)力函數(shù)表達式 將上式代入應(yīng)力函數(shù)所應(yīng)滿足的相容方程則可得這是y的線性方程,但相容方程要求它有無數(shù)多的解(全柱內(nèi)的y值都應(yīng)該滿足它),可見它的系數(shù)和自由項都應(yīng)該等于零,即, 這兩個方程要求, 代入應(yīng)力函數(shù)表達式,并略去對應(yīng)力分量無影響的一次項和常數(shù)項后,便得對應(yīng)應(yīng)力分量為 以上常數(shù)可以根據(jù)邊界條件確定。左邊,沿y方向無面力,所以有右邊,沿y方向的面力為q,
29、所以有上邊,沒有水平面力,這就要求在這部分邊界上合成的主矢量和主矩均為零,即將的表達式代入,并考慮到C=0,則有而自然滿足。又由于在這部分邊界上沒有垂直面力,這就要求在這部分邊界上合成的主矢量和主矩均為零,即, 將的表達式代入,則有由此可得,應(yīng)力分量為, , 雖然上述結(jié)果并不嚴(yán)格滿足上端面處(y=0)的邊界條件,但按照圣維南原理,在稍遠離y=0處這一結(jié)果應(yīng)是適用的。8、證明:如果體力分量雖然不是常量,但卻是有勢的力,即體力分量可以表示為,其中V是勢函數(shù),則應(yīng)力分量亦可用應(yīng)力函數(shù)表示為,試導(dǎo)出相應(yīng)的相容方程。證明:在體力為有勢力的情況下,按應(yīng)力求解應(yīng)力邊界問題時,應(yīng)力分量,應(yīng)當(dāng)滿足平衡微分方程(
30、1分)還應(yīng)滿足相容方程(對于平面應(yīng)力問題)(對于平面應(yīng)變問題)并在邊界上滿足應(yīng)力邊界條件(1分)。對于多連體,有時還必須考慮位移單值條件。首先考察平衡微分方程。將其改寫為這是一個齊次微分方程組。為了求得通解,將其中第一個方程改寫為根據(jù)微分方程理論,一定存在某一函數(shù)A(x,y),使得,同樣,將第二個方程改寫為(1分)可見也一定存在某一函數(shù)B(x,y),使得,由此得因而又一定存在某一函數(shù),使得,代入以上各式,得應(yīng)力分量,為了使上述應(yīng)力分量能同量滿足相容方程,應(yīng)力函數(shù)必須滿足一定的方程,將上述應(yīng)力分量代入平面應(yīng)力問題的相容方程,得簡寫為將上述應(yīng)力分量代入平面應(yīng)變問題的相容方程,得簡寫為9、如圖所示三
31、角形懸臂梁只受重力作用,而梁的密度為,試用純?nèi)蔚膽?yīng)力函數(shù)求解。Oxyarg解:純?nèi)蔚膽?yīng)力函數(shù)為相應(yīng)的應(yīng)力分量表達式為, , 這些應(yīng)力分量是滿足平衡微分方程和相容方程的。現(xiàn)在來考察,如果適當(dāng)選擇各個系數(shù),是否能滿足應(yīng)力邊界條件。上邊,沒有水平面力,所以有對上端面的任意x值都應(yīng)成立,可見同時,該邊界上沒有豎直面力,所以有對上端面的任意x值都應(yīng)成立,可見因此,應(yīng)力分量可以簡化為,斜面,沒有面力,所以有由第一個方程,得對斜面的任意x值都應(yīng)成立,這就要求由第二個方程,得對斜面的任意x值都應(yīng)成立,這就要求(1分)由此解得(1分),從而應(yīng)力分量為, , 設(shè)三角形懸臂梁的長為l,高為h,則。根據(jù)力的平衡,
32、固定端對梁的約束反力沿x方向的分量為0,沿y方向的分量為。因此,所求在這部分邊界上合成的主矢應(yīng)為零,應(yīng)當(dāng)合成為反力。可見,所求應(yīng)力分量滿足梁固定端的邊界條件。10、設(shè)有楔形體如圖所示,左面鉛直,右面與鉛直面成角,下端作為無限長,承受重力及液體壓力,楔形體的密度為,液體的密度為,試求應(yīng)力分量。r2gr1gayxO解:采用半逆解法。首先應(yīng)用量綱分析方法來假設(shè)應(yīng)力分量的函數(shù)形式。取坐標(biāo)軸如圖所示。在楔形體的任意一點,每一個應(yīng)力分量都將由兩部分組成:一部分由重力引起,應(yīng)當(dāng)與成正比(g是重力加速度);另一部分由液體壓力引起,應(yīng)當(dāng)與成正比。此外,每一部分還與,x,y有關(guān)。由于應(yīng)力的量綱是L-1MT-2,和
33、的量綱是L-2MT-2,是量綱一的量,而x和y的量綱是L,因此,如果應(yīng)力分量具有多項式的解答,那么它們的表達式只可能是,四項的組合,而其中的A,B,C,D是量綱一的量,只與有關(guān)。這就是說,各應(yīng)力分量的表達式只可能是x和y的純一次式。其次,由應(yīng)力函數(shù)與應(yīng)力分量的關(guān)系式可知,應(yīng)力函數(shù)比應(yīng)力分量的長度量綱高二次,應(yīng)該是x和y純?nèi)问?,因此,假設(shè)相應(yīng)的應(yīng)力分量表達式為, , 這些應(yīng)力分量是滿足平衡微分方程和相容方程的?,F(xiàn)在來考察,如果適當(dāng)選擇各個系數(shù),是否能滿足應(yīng)力邊界條件。左面,作用有水平面力,所以有對左面的任意y值都應(yīng)成立,可見同時,該邊界上沒有豎直面力,所以有對左面的任意y值都應(yīng)成立,可見因此,
34、應(yīng)力分量可以簡化為,斜面,沒有面力,所以有由第一個方程,得對斜面的任意y值都應(yīng)成立,這就要求由第二個方程,得對斜面的任意x值都應(yīng)成立,這就要求由此解得,從而應(yīng)力分量為 , , 三、計算題1圖示半無限平面體在邊界上受有兩等值反向,間距為d的集中力作用,單位寬度上集中力的值為P,設(shè)間距d很小。試求其應(yīng)力分量,并討論所求解的適用范圍。(提示:取應(yīng)力函數(shù)為 ) (13分)題三(1)圖解:很小,可近似視為半平面體邊界受一集中力偶M的情形。將應(yīng)力函數(shù)代入,可求得應(yīng)力分量: ; ; 邊界條件:(1); 代入應(yīng)力分量式,有 或 (1)(2)取一半徑為r 的半圓為脫離體,邊界上受有:,和M = Pd由該脫離體的
35、平衡,得將代入并積分,有 得 (2)聯(lián)立式(1)、(2)求得:,代入應(yīng)力分量式,得; ; 。結(jié)果的適用性:由于在原點附近應(yīng)用了圣維南原理,故此結(jié)果在原點附近誤差較大,離原點較遠處可適用。2圖示懸臂梁,受三角形分布載荷作用,若梁的正應(yīng)力由材料力學(xué)公式給出,試由平衡微分方程求出,并檢驗該應(yīng)力分量能否滿足應(yīng)力表示的相容方程。(12分) 題三(2)圖解:(1)求橫截面上正應(yīng)力任意截面的彎矩為,截面慣性矩為,由材料力學(xué)計算公式有 (1)(2)由平衡微分方程求、平衡微分方程: 其中,。將式(1)代入式(2),有積分上式,得利用邊界條件:,有 即 (4)將式(4)代入式(3),有 或 積分得利用邊界條件:,
36、得:由第二式,得將其代入第一式,得 自然成立。將代入的表達式,有 (5)所求應(yīng)力分量的結(jié)果: (6)校核梁端部的邊界條件:(1)梁左端的邊界(x = 0):, 代入后可見:自然滿足。(2)梁右端的邊界(x = l):可見,所有邊界條件均滿足。檢驗應(yīng)力分量是否滿足應(yīng)力相容方程:常體力下的應(yīng)力相容方程為將應(yīng)力分量式(6)代入應(yīng)力相容方程,有,顯然,應(yīng)力分量不滿足應(yīng)力相容方程,因而式(6)并不是該該問題的正確解。3一端固定,另一端彈性支承的梁,其跨度為l,抗彎剛度EI為常數(shù),梁端支承彈簧的剛度系數(shù)為k。梁受有均勻分布載荷q作用,如圖所示。試:(1)構(gòu)造兩種形式(多項式、三角函數(shù))的梁撓度試函數(shù);(2
37、)用最小勢能原理或Ritz法求其多項式形式的撓度近似解(取1項待定系數(shù))。 (13分)題二(3)圖解:兩種形式的梁撓度試函數(shù)可取為 多項式函數(shù)形式 三角函數(shù)形式此時有:即滿足梁的端部邊界條件。 梁的總勢能為取:,有,代入總勢能計算式,有由,有代入梁的撓度試函數(shù)表達式,得一次近似解為4已知受力物體內(nèi)某一點的應(yīng)力分量為:,試求經(jīng)過該點的平面上的正應(yīng)力。 (12分)解:由平面方程,得其法線方向單位矢量的方向余弦為, 名詞解釋(共10分,每小題5分)1. 彈性力學(xué):研究彈性體由于受外力作用或溫度改變等原因而發(fā)生的應(yīng)力、應(yīng)變和位移。2. 圣維南原理:如果把物體的一小部分邊界上的面力,變換為分布不同但靜力
38、等效的面力(主矢量相同,對于同一點的主矩也相同),那么近處的應(yīng)力分布將有顯著的改變,但是遠處所受的影響可以不計。 填空(共20分,每空1分)一 問答題(36)1. (12分)試列出圖5-1的全部邊界條件,在其端部邊界上,應(yīng)用圣維南原理列出三個積分的應(yīng)力邊界條件。(板厚) 圖5-1解:在主要邊界上,應(yīng)精確滿足下列邊界條件:,; ,在次要邊界上,應(yīng)用圣維南原理列出三個積分的應(yīng)力邊界條件,當(dāng)板厚時,在次要邊界上,有位移邊界條件:,。這兩個位移邊界條件可以改用三個積分的應(yīng)力邊界條件代替:,2. (10分)試考察應(yīng)力函數(shù),能滿足相容方程,并求出應(yīng)力分量(不計體力),畫出圖5-2所示矩形體邊界上的面力分布
39、,并在次要邊界上表示出面力的主矢和主矩。圖5-2解:(1)相容條件:將代入相容方程,顯然滿足。(2)應(yīng)力分量表達式:,(3)邊界條件:在主要邊界上,即上下邊,面力為,在次要邊界上,面力的主失和主矩為 彈性體邊界上的面力分布及在次要邊界上面力的主失量和主矩如解圖所示。3. (14分)設(shè)有矩形截面的長豎柱,密度為,在一邊側(cè)面上受均布剪力q, 如圖5-3所示,試求應(yīng)力分量。(提示:采用半逆解法,因為在材料力學(xué)彎曲的基本公式中,假設(shè)材料符合簡單的胡克定律,故可認為矩形截面豎柱的縱向纖維間無擠壓,即可設(shè)應(yīng)力分量 )圖 5-3解:采用半逆解法,因為在材料力學(xué)彎曲的基本公式中,假設(shè)材料符合簡單的胡克定律,故
40、可認為矩形截面豎柱的縱向纖維間無擠壓,即可設(shè)應(yīng)力分量,(1) 假設(shè)應(yīng)力分量的函數(shù)形式。(2) 推求應(yīng)力函數(shù)的形式。此時,體力分量為。將代入應(yīng)力公式有對積分,得, (a) 。 (b)其中,都是的待定函數(shù)。(3)由相容方程求解應(yīng)力函數(shù)。將式(b)代入相容方程,得這是y的一次方程,相容方程要求它有無數(shù)多的根(全部豎柱內(nèi)的y值都應(yīng)該滿足),可見它的系數(shù)和自由項都必須等于零。,兩個方程要求, (c)中的常數(shù)項,中的一次和常數(shù)項已被略去,因為這三項在的表達式中成為y的一次和常數(shù)項,不影響應(yīng)力分量。得應(yīng)力函數(shù) (d)(4)由應(yīng)力函數(shù)求應(yīng)力分量。, (e), (f). (g)(5) 考察邊界條件。利用邊界條件確定待定系數(shù)先來考慮左右兩邊的主要邊界條件:,。將應(yīng)力分量式(e)和(g)代入,這些邊界條件要求:,自然滿足; (h) (i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小額貸款擔(dān)保及貸款利率調(diào)整及貸款條件變更及擔(dān)保人責(zé)任合同3篇
- 二零二五年度木工耗材供應(yīng)與配送合同4篇
- 01 修辭手法題的應(yīng)對策略-高考語文一輪復(fù)習(xí)之核心考點解密
- 七年級道德與法治試卷
- 信用激勵措施考核試卷
- 二零二五年度鋼材行業(yè)質(zhì)量標(biāo)準(zhǔn)制定與實施合同3篇
- 二零二五年度陵園墓碑雕刻技藝傳承合同4篇
- 2025版品牌視覺設(shè)計制作合同范本2篇
- 《菜根譚名句》課件
- 2025年因擅自公開他人隱私賠償協(xié)議
- 課題申報書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計研究
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟學(xué)的思維方式(第13版)
- 盤錦市重點中學(xué)2024年中考英語全真模擬試卷含答案
- 手衛(wèi)生依從性調(diào)查表
- 湖北教育出版社四年級下冊信息技術(shù)教案
評論
0/150
提交評論