版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第1 頁(yè),共 31 頁(yè)競(jìng)賽作品資料包括以下兩部分,請(qǐng)分別壓縮后在“會(huì)員中心”統(tǒng)一提交:1、論文正文要求用 word2003 格式整理,壓縮成“論文正文.zip”2、源數(shù)據(jù)(組委會(huì)提供的源數(shù)據(jù)外) 、過(guò)程數(shù)據(jù)、程序及模型文件,壓縮成“附件資料.zip”所選題目: 基于數(shù)據(jù)挖掘技術(shù)的市財(cái)政收入分析預(yù)測(cè)模型基于數(shù)據(jù)挖掘技術(shù)的市財(cái)政收入分析預(yù)測(cè)模型綜合評(píng)定成績(jī): 評(píng)委評(píng)語(yǔ)評(píng)委評(píng)語(yǔ):評(píng)委簽名:評(píng)委簽名: 泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第2 頁(yè),共 31 頁(yè)基于數(shù)據(jù)挖掘技術(shù)的廣州市財(cái)政收入分析基于數(shù)據(jù)挖掘技術(shù)的廣州市財(cái)政收入分析摘摘要要:地方財(cái)政收入的穩(wěn)定增長(zhǎng)對(duì)于地區(qū)經(jīng)濟(jì)
2、的發(fā)展具有重要作用。而地方財(cái)政收入的穩(wěn)定增長(zhǎng)對(duì)于地區(qū)經(jīng)濟(jì)的發(fā)展具有重要作用。而財(cái)政收財(cái)政收入是衡量一國(guó)政府財(cái)力的重要指標(biāo),入是衡量一國(guó)政府財(cái)力的重要指標(biāo),近幾年來(lái)近幾年來(lái), ,政府公共財(cái)政在經(jīng)濟(jì)和社會(huì)發(fā)政府公共財(cái)政在經(jīng)濟(jì)和社會(huì)發(fā)展中扮演的角色越來(lái)越重要。如何調(diào)整和優(yōu)化現(xiàn)有的財(cái)政支出和規(guī)模結(jié)構(gòu),展中扮演的角色越來(lái)越重要。如何調(diào)整和優(yōu)化現(xiàn)有的財(cái)政支出和規(guī)模結(jié)構(gòu),服務(wù)于地方經(jīng)濟(jì)建設(shè)的發(fā)展服務(wù)于地方經(jīng)濟(jì)建設(shè)的發(fā)展, ,一個(gè)重要的表現(xiàn)就是地方財(cái)政收入的不斷增加。一個(gè)重要的表現(xiàn)就是地方財(cái)政收入的不斷增加。地方財(cái)政收入的穩(wěn)定增加地方財(cái)政收入的穩(wěn)定增加, ,客觀上也會(huì)不斷推動(dòng)地方經(jīng)濟(jì)的進(jìn)一步發(fā)展??陀^上也會(huì)不
3、斷推動(dòng)地方經(jīng)濟(jì)的進(jìn)一步發(fā)展。財(cái)政支出作為作為一種重要的經(jīng)濟(jì)調(diào)控手段,其規(guī)模大小和使用方向的財(cái)政支出作為作為一種重要的經(jīng)濟(jì)調(diào)控手段,其規(guī)模大小和使用方向的不同會(huì)造成不同的經(jīng)濟(jì)效益,而財(cái)政支出對(duì)于經(jīng)濟(jì)的影響近年來(lái)一直是當(dāng)前不同會(huì)造成不同的經(jīng)濟(jì)效益,而財(cái)政支出對(duì)于經(jīng)濟(jì)的影響近年來(lái)一直是當(dāng)前數(shù)據(jù)挖掘的熱點(diǎn),因?yàn)檎?cái)政支出的熱點(diǎn)不僅反映了財(cái)政政策的重點(diǎn),還數(shù)據(jù)挖掘的熱點(diǎn),因?yàn)檎?cái)政支出的熱點(diǎn)不僅反映了財(cái)政政策的重點(diǎn),還能夠有效引導(dǎo)私人需求,對(duì)經(jīng)濟(jì)增長(zhǎng)和結(jié)構(gòu)升級(jí)又都重要意義。隨著我國(guó)的能夠有效引導(dǎo)私人需求,對(duì)經(jīng)濟(jì)增長(zhǎng)和結(jié)構(gòu)升級(jí)又都重要意義。隨著我國(guó)的經(jīng)濟(jì)不斷發(fā)展,我國(guó)的財(cái)政支出也在不斷的擴(kuò)張,而廣州市
4、作為改革開(kāi)放的經(jīng)濟(jì)不斷發(fā)展,我國(guó)的財(cái)政支出也在不斷的擴(kuò)張,而廣州市作為改革開(kāi)放的前沿城市,具有較強(qiáng)的經(jīng)濟(jì)實(shí)力,對(duì)國(guó)家的經(jīng)濟(jì)增長(zhǎng)提供了極大的貢獻(xiàn),因前沿城市,具有較強(qiáng)的經(jīng)濟(jì)實(shí)力,對(duì)國(guó)家的經(jīng)濟(jì)增長(zhǎng)提供了極大的貢獻(xiàn),因此,對(duì)廣州市這樣一個(gè)模板城市的財(cái)政收入和支出分析對(duì)于一個(gè)城市的發(fā)展此,對(duì)廣州市這樣一個(gè)模板城市的財(cái)政收入和支出分析對(duì)于一個(gè)城市的發(fā)展具有重要的意義,然而不同時(shí)期的財(cái)政支出對(duì)不同時(shí)期的經(jīng)濟(jì)發(fā)展需求不一具有重要的意義,然而不同時(shí)期的財(cái)政支出對(duì)不同時(shí)期的經(jīng)濟(jì)發(fā)展需求不一樣,因此,本文根據(jù)廣州市進(jìn)年年來(lái)的財(cái)政數(shù)據(jù)做了系統(tǒng)的統(tǒng)計(jì)與分析,并樣,因此,本文根據(jù)廣州市進(jìn)年年來(lái)的財(cái)政數(shù)據(jù)做了系統(tǒng)的統(tǒng)計(jì)與
5、分析,并對(duì)其未來(lái)所有支出部門(mén)做了預(yù)測(cè),有助于我國(guó)的財(cái)政支出更有效的服務(wù)于經(jīng)對(duì)其未來(lái)所有支出部門(mén)做了預(yù)測(cè),有助于我國(guó)的財(cái)政支出更有效的服務(wù)于經(jīng)濟(jì)發(fā)展?jié)l(fā)展關(guān)鍵詞:數(shù)據(jù)挖掘關(guān)鍵詞:數(shù)據(jù)挖掘 財(cái)政支出財(cái)政支出 促進(jìn)經(jīng)濟(jì)促進(jìn)經(jīng)濟(jì)泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第3 頁(yè),共 31 頁(yè)The thesis titleAbstract: A brief description of the abstractThe stability of the local fiscal revenue growth plays an important role in the development of regiona
6、l economy. Fiscal revenue is an important index to measure a countrys government financial resources, in recent years, the government public finance in the economic and social development is playing an increasingly important role. How to adjust and optimize the structure of fiscal expenditure and sc
7、ale of the existing, services in the development of local economic construction, is an important part of the performance of local fiscal revenue increased. The stability of the local fiscal revenue increase, objectively also will continue to promote the further development of local economy.Fiscal sp
8、ending as a kind of important economic control measures, the size and direction of use of different can lead to different economic benefits, and the effect of fiscal expenditure to economic has always been the hot spot of the current data mining in recent years, because the government fiscal spendin
9、g hotspot not only reflects the focus of fiscal policy, also can effectively guide the private demand for economic growth and structure upgrade and are of great significanceexpenditure of our country are also constantly, and guangzhou as the forefront of reform and opening up city, with strong econo
10、mic strength and growth provides a tremendous contribution to the economy of the country, therefore, for the guangzhou city as a template for fiscal revenue and expenditure analysis is of important significance for the development of a city, but in different periods of fiscal expenditure is not the
11、same as the demand for different periods of economic development, therefore, this paper, based on the financialdata of guangzhou into a year to do the statistics and analysis of the system, and the department has made the forecast and the future of all spending, help to Chinas fiscal spending is mor
12、e effective in the service of economic development泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第4 頁(yè),共 31 頁(yè)Key words: Data mining Public finance expenditure泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第5 頁(yè),共 31 頁(yè)目 錄1.研究目標(biāo)研究目標(biāo) .62.分析方法與過(guò)程分析方法與過(guò)程.62.1. 總體流程.62.2. 具體步驟.62.3. 結(jié)果分析.73.結(jié)論結(jié)論.74.參考文獻(xiàn)參考文獻(xiàn) .7泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第6 頁(yè),共 31 頁(yè)1. 挖掘目標(biāo)挖掘目標(biāo)本次建模目標(biāo)是利用廣州市統(tǒng)計(jì)局積累下來(lái)的海
13、量真實(shí)數(shù)據(jù),采用數(shù)據(jù)挖掘技術(shù),分析各類(lèi)支出數(shù)據(jù)的相互關(guān)系、發(fā)現(xiàn)事件之間的內(nèi)部關(guān)聯(lián),構(gòu)建反映支出與收入之間的模型,挖掘出當(dāng)前對(duì)支出的影響的當(dāng)前熱點(diǎn),需要實(shí)現(xiàn)以下的具體目標(biāo) (一)對(duì)數(shù)據(jù)選取、收集 數(shù)據(jù)選取的目的是確定目標(biāo)數(shù)據(jù),從廣州市統(tǒng)計(jì)局獲取最近的財(cái)政支出和收入的數(shù)據(jù)。(二)數(shù)據(jù)整理 數(shù)據(jù)整理是對(duì)選出的數(shù)據(jù)進(jìn)行再處理,檢查數(shù)據(jù)的完整性及一致性,消除噪聲及與數(shù)據(jù)挖掘無(wú)關(guān)的冗余數(shù)據(jù),根據(jù)時(shí)間序列和已知的變化情況,利用統(tǒng)計(jì)等方法填充丟失的數(shù)據(jù)。數(shù)據(jù)整理包括以下內(nèi)容:1.數(shù)據(jù)選擇。搜索所有與財(cái)政支出對(duì)象有關(guān)的內(nèi)部和外部數(shù)據(jù)信息,根據(jù)財(cái)政支出的目的從中選擇出適用于數(shù)據(jù)挖掘的數(shù)據(jù)。2.在原數(shù)據(jù)的基礎(chǔ)上,尋
14、找依賴于發(fā)現(xiàn)目標(biāo)的表達(dá)數(shù)據(jù)的有用特征,以縮減數(shù)據(jù)規(guī)模,從而在盡可能保持?jǐn)?shù)據(jù)原貌的前提下最大限度地精簡(jiǎn)數(shù)據(jù)量。3.數(shù)據(jù)轉(zhuǎn)換。選取合適的知識(shí)發(fā)現(xiàn)算法,合適的模型和參數(shù),建立分析模型,并將數(shù)據(jù)轉(zhuǎn)換成為該分析模型。(三)數(shù)據(jù)挖掘并得出預(yù)測(cè)結(jié)論 根據(jù)一系列的數(shù)據(jù)挖掘算法即數(shù)學(xué)模型,得出客觀的科學(xué)依據(jù),為財(cái)政局的規(guī)劃提供重要參考材料。 2. 分析方法與過(guò)程分析方法與過(guò)程2.1. 總體流程總體流程泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第7 頁(yè),共 31 頁(yè)本題分析主要步驟如下一,對(duì)數(shù)據(jù)進(jìn)行選取,搜集。本題分析主要步驟二,對(duì)選出和搜集的數(shù)據(jù)進(jìn)行抽取,根據(jù)項(xiàng)目需求對(duì)數(shù)據(jù)進(jìn)行清洗,消除與項(xiàng)目無(wú)關(guān)的冗余數(shù)據(jù)。三,數(shù)據(jù)分析
15、,對(duì)經(jīng)過(guò)整理的數(shù)據(jù)建立數(shù)學(xué)模型, 采用相應(yīng)的數(shù)據(jù)挖掘方法進(jìn)行關(guān)鍵數(shù)據(jù)的抽取,并得到正確的結(jié)論。2.2. 具體分析過(guò)程及操作步驟具體分析過(guò)程及操作步驟問(wèn)題一:通過(guò)工具 Rstudio 導(dǎo)入選取出的數(shù)據(jù),并對(duì)其進(jìn)行操作,從大量的,不完全的,有噪聲的,模糊的,實(shí)際應(yīng)用數(shù)據(jù)中,通過(guò)回歸分析方法,尋找變量之間的關(guān)系,運(yùn)用這種關(guān)系對(duì)數(shù)據(jù)進(jìn)行控制,提取出隱藏在其中的有效數(shù)據(jù)的,利用這些數(shù)據(jù)做回歸模型的顯著性檢驗(yàn),回歸系數(shù)的顯著性檢驗(yàn)等,根據(jù)對(duì)數(shù)據(jù)進(jìn)行多元線性回歸,逐步回歸,正態(tài)檢測(cè)等可分析、識(shí)別出影響財(cái)政收入的關(guān)鍵影響因素,具體操作步驟如下所示:1.導(dǎo)入數(shù)據(jù) fujian=read.csv(C:/Users
16、/RWY/Desktop/數(shù)據(jù)挖掘賽題/地方財(cái)政收入?yún)R總.csv) fujian 年份 地方財(cái)政收入合計(jì) 公共財(cái)政收入 增值稅 營(yíng)業(yè)稅 企業(yè)所得稅 個(gè)人所得稅 城市維護(hù)建設(shè)稅1 1999 1881388 1761499 288972 433360 277375 133621 1169732 2000 2199077 2005460 350495 479698 309764 185625 1290753 2001 2719058 2461941 443213 540075 483421 254892 1527394 2002 2690984 2458737 526377 613161 23641
17、6 159684 1648925 2003 3005475 2747707 581898 650119 268360 153080 1734526 2004 3384477 3028692 528365 793520 326556 167379 1999907 2005 4088545 3712633 816119 892678 373397 198017 2284198 2006 4767231 4270831 967265 1027971 455820 231794 2684209 2007 8389925 5237862 1115007 1235374 596693 泰迪杯大學(xué)生數(shù)據(jù)挖掘
18、競(jìng)賽論文報(bào)告第8 頁(yè),共 31 頁(yè)295316 32520810 2009 11076649 7026527 1375085 1516049 732282 389824 36111811 2010 13991612 8726470 1594182 1777343 935248 472154 42662212 2011 15351387 9794768 1573830 1625593 1061594 462098 85388213 2012 15796804 11023961 1758311 1747616 1075045 439592 92415014 2013 20881374 114180
19、44 2216017 1623520 1155923 489777 1013703 房產(chǎn)稅 印花稅 契稅 行政事業(yè)性收費(fèi)收入1 77562 21159 145254 300722 90776 28124 99776 388653 109140 30106 97903 857624 134061 35561 114520 1359195 146223 42490 171699 1713976 168904 67625 204895 1937437 200221 64862 221754 2019978 239285 80913 251382 2349499 262053 110676 30694
20、0 25300010 349616 154364 464568 27129311 416964 194584 610978 65165112 512657 211024 575560 68584013 612254 219623 581872 72219014 648012 260946 798657 806981 attach(fujian)2.線性關(guān)系圖 par(mfrow=c(3,3) plot(地方財(cái)政收入合計(jì)公共財(cái)政收入);abline(lm(地方財(cái)政收入合計(jì)公共財(cái)政收入) plot(地方財(cái)政收入合計(jì)增值稅);abline(lm(地方財(cái)政收入合計(jì)增值稅) plot(地方財(cái)政收入合計(jì)營(yíng)
21、業(yè)稅);abline(lm(地方財(cái)政收入合計(jì)營(yíng)業(yè)稅) plot(地方財(cái)政收入合計(jì)企業(yè)所得稅);abline(lm(地方財(cái)政收入合計(jì)企業(yè)所得稅) plot(地方財(cái)政收入合計(jì)個(gè)人所得稅);abline(lm(地方財(cái)政收入合計(jì)個(gè)人所得稅) plot(地方財(cái)政收入合計(jì)城市維護(hù)建設(shè)稅);abline(lm(地方財(cái)政收入合計(jì)城市維護(hù)建設(shè)稅) plot(地方財(cái)政收入合計(jì)房產(chǎn)稅);abline(lm(地方財(cái)政收入合計(jì)房產(chǎn)稅) plot(地方財(cái)政收入合計(jì)印花稅);abline(lm(地方財(cái)政收入合計(jì)印花稅) plot(地方財(cái)政收入合計(jì)契稅);abline(lm(地方財(cái)政收入合計(jì)契稅) plot(地方財(cái)政收入合計(jì)
22、行政事業(yè)性收費(fèi)收入);abline(lm(地方財(cái)政收入合計(jì)行政事業(yè)性收費(fèi)收入)2.多元線性回歸的匯總輸出 lm.test_new=lm(地方財(cái)政收入合計(jì)公共財(cái)政收入+增值稅+營(yíng)業(yè)稅+企業(yè)所得稅+泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第9 頁(yè),共 31 頁(yè)個(gè)人所得稅+城市維護(hù)建設(shè)稅+房產(chǎn)稅+印花稅+契稅+行政事業(yè)性收費(fèi)收入) summary(lm.test_new)#查看回歸系數(shù)和模型的檢驗(yàn)結(jié)果Call:lm(formula = 地方財(cái)政收入合計(jì) 公共財(cái)政收入 + 增值稅 + 營(yíng)業(yè)稅 + 企業(yè)所得稅 + 個(gè)人所得稅 + 城市維護(hù)建設(shè)稅 + 房產(chǎn)稅 + 印花稅 + 契稅 + 行政事業(yè)性收費(fèi)收入)Resi
23、duals: 1 2 3 4 5 6 7 8 9 10 11 130734 -331440 100282 287608 -73537 28738 -153519 -77698 64031 42644 -10229 12 13 14 -24768 4711 12443 Coefficients: Estimate Std. Error t value Pr(|t|) (Intercept) 3.713e+06 1.486e+06 2.498 0.0879 .公共財(cái)政收入 4.454e+00 1.129e+00 3.946 0.0290 *增值稅 7.929e+00 1.717e+00 4.618
24、 0.0191 *營(yíng)業(yè)稅 -1.152e+01 2.724e+00 -4.229 0.0242 *企業(yè)所得稅 3.482e+00 4.042e+00 0.861 0.4523 個(gè)人所得稅 -2.204e+01 1.148e+01 -1.919 0.1508 城市維護(hù)建設(shè)稅 -5.495e+00 4.516e+00 -1.217 0.3107 房產(chǎn)稅 -6.289e+01 1.524e+01 -4.126 0.0258 *印花稅 1.341e+02 3.303e+01 4.059 0.0270 *契稅 -1.650e+01 7.616e+00 -2.166 0.1189 行政事業(yè)性收費(fèi)收入 -1
25、.589e+00 1.480e+00 -1.073 0.3618 -Signif. codes: 0 * 0.001 * 0.01 * 0.05 . 0.1 1Residual standard error: 295700 on 3 degrees of freedomMultiple R-squared: 0.9995, Adjusted R-squared: 0.9978 F-statistic: 600.2 on 10 and 3 DF, p-value: 0.00010063.繪制四個(gè)相關(guān)系數(shù)圖 plot(lm.test_new,1)#殘差,普通殘差與擬合值的殘差圖 plot(lm.t
26、est_new,2)#QQ 圖,若殘差是來(lái)自正態(tài)總體分布的樣本,則 QQ 圖中的點(diǎn)應(yīng)該在一條直線上 plot(lm.test_new,3)#標(biāo)準(zhǔn)化殘差開(kāi)方與擬合值的殘差圖(對(duì)于近似服從正態(tài)分布的標(biāo)準(zhǔn)化殘差,應(yīng)該有 95%的樣本點(diǎn)落在-2,2的區(qū)間內(nèi)。這也是判斷異常點(diǎn)的直觀方法) plot(lm.test_new,4)#(cook 統(tǒng)計(jì)量值越大的點(diǎn)越可能是異常值,但具體閥值是多少較難判別)泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第10 頁(yè),共 31 頁(yè)4.逐步回歸 step(lm.test_new)#用 step 實(shí)現(xiàn)變量選擇Start: AIC=353.16地方財(cái)政收入合計(jì) 公共財(cái)政收入 + 增值稅
27、+ 營(yíng)業(yè)稅 + 企業(yè)所得稅 + 個(gè)人所得稅 + 城市維護(hù)建設(shè)稅 + 房產(chǎn)稅 + 印花稅 + 契稅 + 行政事業(yè)性收費(fèi)收入 Df Sum of Sq RSS AIC 2.6237e+11 353.16- 企業(yè)所得稅 1 6.4900e+10 3.2727e+11 354.25- 行政事業(yè)性收費(fèi)收入 1 1.0075e+11 3.6312e+11 355.71- 城市維護(hù)建設(shè)稅 1 1.2950e+11 3.9187e+11 356.77- 個(gè)人所得稅 1 3.2207e+11 5.8444e+11 362.37- 契稅 1 4.1034e+11 6.7271e+11 364.34- 公共財(cái)政收入
28、 1 1.3621e+12 1.6245e+12 376.68- 印花稅 1 1.4406e+12 1.7030e+12 377.34- 房產(chǎn)稅 1 1.4891e+12 1.7515e+12 377.73- 營(yíng)業(yè)稅 1 1.5640e+12 1.8264e+12 378.32- 增值稅 1 1.8649e+12 2.1272e+12 380.46Call:lm(formula = 地方財(cái)政收入合計(jì) 公共財(cái)政收入 + 增值稅 + 營(yíng)業(yè)稅 + 企業(yè)所得稅 + 個(gè)人所得稅 + 城市維護(hù)建設(shè)稅 + 房產(chǎn)稅 + 印花稅 + 契稅 + 行政事業(yè)性收費(fèi)收入)Coefficients: (Intercept
29、) 公共財(cái)政收入 增值稅 營(yíng)業(yè)稅 3.713e+06 4.454e+00 7.929e+00 -1.152e+01 企業(yè)所得稅 個(gè)人所得稅 城市維護(hù)建設(shè)稅 房產(chǎn)稅 3.482e+00 -2.204e+01 -5.495e+00 -6.289e+01 印花稅 契稅 行政事業(yè)性收費(fèi)收入 1.341e+02 -1.650e+01 -1.589e+00 該程序步驟的相關(guān)建模圖如下所示: 泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第11 頁(yè),共 31 頁(yè)泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第12 頁(yè),共 31 頁(yè)因此,根據(jù)以上對(duì)數(shù)據(jù)的處理結(jié)果以及建模圖可分析、識(shí)別得出結(jié)論:主要影響地方財(cái)政收入的因素有:公共財(cái)政收入,
30、增值稅,營(yíng)業(yè)稅,企業(yè)所得稅,房產(chǎn)稅,印花稅。問(wèn)題二:利用時(shí)間序列及指數(shù)平滑預(yù)測(cè)對(duì)影響地方財(cái)政收入的數(shù)據(jù)進(jìn)行分析處理,可以對(duì)廣州市 2015 年的財(cái)政總收入及各個(gè)類(lèi)別收入進(jìn)行預(yù)測(cè),具體步驟如下所示:1.導(dǎo)入數(shù)據(jù) fujian=read.csv(C:/Users/RWY/Desktop/數(shù)據(jù)挖掘賽題/影響財(cái)政收入的主要因素.csv) fujian年份 地方財(cái)政收入合計(jì) 增值稅 營(yíng)業(yè)稅 企業(yè)所得稅 房產(chǎn)稅 印花稅 公共財(cái)政收入泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第13 頁(yè),共 31 頁(yè)1 1999 1881388 288972 433360 277375 77562 21159 17614992 200
31、0 2199077 350495 479698 309764 90776 28124 20054603 2001 2719058 443213 540075 483421 109140 30106 24619414 2002 2690984 526377 613161 236416 134061 35561 24587375 2003 3005475 581898 650119 268360 146223 42490 27477076 2004 3384477 528365 793520 326556 168904 67625 30286927 2005 4088545 816119 8926
32、78 373397 200221 64862 37126338 2006 4767231 967265 1027971 455820 239285 80913 42708319 2007 8389925 1115007 1235374 596693 262053 110676 523786210 2008 8431400 1287226 1279793 756412 305843 132520 613219411 2009 11076649 1375085 1516049 732282 349616 154364 702652712 2010 13991612 1594182 1777343
33、935248 416964 194584 872647013 2011 15351387 1573830 1625593 1061594 512657 211024 979476814 2012 15796804 1758311 1747616 1075045 612254 219623 1102396115 2013 20881374 2216017 1623520 1155923 648012 260946 11418044 attach(fujian)The following objects are masked from fujian (pos = 3): 地方財(cái)政收入合計(jì), 房產(chǎn)稅
34、, 年份, 企業(yè)所得稅, 印花稅, 營(yíng)業(yè)稅, 增值稅The following objects are masked from fujian (pos = 7): 地方財(cái)政收入合計(jì), 房產(chǎn)稅, 年份, 企業(yè)所得稅, 印花稅, 營(yíng)業(yè)稅, 增值稅The following objects are masked from fujian (pos = 8): 地方財(cái)政收入合計(jì), 房產(chǎn)稅, 公共財(cái)政收入, 年份, 企業(yè)所得稅, 印花稅, 營(yíng)業(yè)稅, 增值稅2.繪制時(shí)間序列圖泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第14 頁(yè),共 31 頁(yè) fujian=ts(fujian,start=1999) par(mfcol
35、=c(1,2),cex=0.5) plot(fujian,2,xlab=時(shí)間,ylab=地方財(cái)政收入合計(jì),type=n) grid(col=lightblue) points(fujian,2,type=o,xlab=時(shí)間,ylab=地方財(cái)政收入合計(jì)) plot(fujian,3,xlab=時(shí)間,ylab=增值稅,type=n) grid(col=lightblue) points(fujian,3,type=o,xlab=時(shí)間,ylab=增值稅) plot(fujian,4,xlab=時(shí)間,ylab=營(yíng)業(yè)稅,type=n) grid(col=lightblue) points(fujian,
36、4,type=o,xlab=時(shí)間,ylab=營(yíng)業(yè)稅) plot(fujian,5,xlab=時(shí)間,ylab=企業(yè)所得稅,type=n) grid(col=lightblue) points(fujian,5,type=o,xlab=時(shí)間,ylab=企業(yè)所得稅) plot(fujian,6,xlab=時(shí)間,ylab=房產(chǎn)稅,type=n) grid(col=lightblue) points(fujian,6,type=o,xlab=時(shí)間,ylab=房產(chǎn)稅) plot(fujian,7,xlab=時(shí)間,ylab=印花稅,type=n) grid(col=lightblue) points(fuj
37、ian,7,type=o,xlab=時(shí)間,ylab=印花稅) plot(fujian,8,xlab=時(shí)間,ylab=公共財(cái)政收入,type=n) grid(col=lightblue) points(fujian,8,type=o,xlab=時(shí)間,ylab=公共財(cái)政收入)3.指數(shù)平滑預(yù)測(cè) fujian=ts(fujian,start=1999) dfczzchjforecast=HoltWinters(fujian,2,beta=FALSE,gamma=FALSE) dfczsrhjforecastHolt-Winters exponential smoothing without trend
38、 and without seasonal component.Call:HoltWinters(x = fujian, 2, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.9999202 beta : FALSE gamma: FALSECoefficients: ,1a 20880968 zzsforecast=HoltWinters(fujian,3,beta=FALSE,gamma=FALSE) zzsforecastHolt-Winters exponential smoothing without trend
39、and without seasonal 泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第15 頁(yè),共 31 頁(yè)component.Call:HoltWinters(x = fujian, 3, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.9999587 beta : FALSE gamma: FALSECoefficients: ,1a 2215998 yysforecast=HoltWinters(fujian,4,beta=FALSE,gamma=FALSE) yysforecastHolt-Winters exponentia
40、l smoothing without trend and without seasonal component.Call:HoltWinters(x = fujian, 4, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.999953 beta : FALSE gamma: FALSECoefficients: ,1a 1623526 qysdsforecast=HoltWinters(fujian,4,beta=FALSE,gamma=FALSE) qysdsforecast=HoltWinters(fujian,5,
41、beta=FALSE,gamma=FALSE) qysdsforecastHolt-Winters exponential smoothing without trend and without seasonal component.Call:HoltWinters(x = fujian, 5, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.9999538 beta : FALSE gamma: FALSECoefficients:泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第16 頁(yè),共 31 頁(yè) ,1a 1155919 fcsfo
42、recast=HoltWinters(fujian,4,beta=FALSE,gamma=FALSE) fcsforecast=HoltWinters(fujian,6,beta=FALSE,gamma=FALSE) fcsforecastHolt-Winters exponential smoothing without trend and without seasonal component.Call:HoltWinters(x = fujian, 6, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.9999328 b
43、eta : FALSE gamma: FALSECoefficients: ,1a 648009.6 yhsforecast=HoltWinters(fujian,7,beta=FALSE,gamma=FALSE) yhsforecastHolt-Winters exponential smoothing without trend and without seasonal component.Call:HoltWinters(x = fujian, 7, beta = FALSE, gamma = FALSE)Smoothing parameters: alpha: 0.9999202 be
44、ta : FALSE gamma: FALSECoefficients: ,1a 260942.7 ggczsrforecast=HoltWinters(fujian,8,beta=FALSE,gamma=FALSE) ggczsrforecastHolt-Winters exponential smoothing without trend and without seasonal component.Call:HoltWinters(x = fujian, 8, beta = FALSE, gamma = FALSE)Smoothing parameters:泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)
45、告第17 頁(yè),共 31 頁(yè) alpha: 0.9999257 beta : FALSE gamma: FALSECoefficients: ,1a 114180154.歷史數(shù)據(jù)的擬合值 dfczsrhjforecast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 18813882199052 21990522002 2719016 27190162003 2690986 26909862004 3005450 30054502005 3384447 33844472006
46、 4088489 40884892007 4767177 47671772008 8389636 83896362009 8431397 84313972010 11076438 110764382011 13991379 139913792012 15351278 153512782013 15796768 15796768 zzsforecast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 288972.0 288972.02001 350492.5 350492.52002 443209.2
47、 443209.22003 526373.6 526373.62004 581895.7 581895.72005 528367.2 528367.22006 816107.1 816107.12007 967258.8 967258.82008 1115000.9 1115000.92009 1287218.9 1287218.9泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第18 頁(yè),共 31 頁(yè)2010 1375081.4 1375081.42011 1594172.9 1594172.92012 1573830.8 1573830.82013 1758303.4 1758303.4 yysforec
48、ast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 433360.0 433360.02001 479695.8 479695.82002 540072.2 540072.22003 613157.6 613157.62004 650117.3 650117.32005 793513.3 793513.32006 892673.3 892673.32007 1027964.6 1027964.62008 1235364.2 1235364.22009 1279790.9 1279790.92010
49、 1516037.9 1516037.92011 1777330.7 1777330.72012 1625600.1 1625600.12013 1747610.3 1747610.3 qysdsforecast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 277375.0 277375.02001 309762.5 309762.52002 483413.0 483413.02003 236427.4 236427.42004 268358.5 268358.52005 326553.3 326
50、553.32006 373394.8 373394.82007 455816.2 455816.22008 596686.5 596686.52009 756404.6 756404.62010 732283.1 732283.12011 935238.6 935238.62012 1061588.2 1061588.22013 1075044.4 1075044.4泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第19 頁(yè),共 31 頁(yè) fcsforecast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 775
51、62.00 77562.002001 90775.11 90775.112002 109138.77 109138.772003 134059.32 134059.322004 146222.18 146222.182005 168902.47 168902.472006 200218.89 200218.892007 239282.37 239282.372008 262051.47 262051.472009 305840.06 305840.062010 349613.06 349613.062011 416959.47 416959.472012 512650.57 512650.57
52、2013 612247.30 612247.30 yhsforecast$fittedTime Series:Start = 2000 End = 2013 Frequency = 1 xhat level2000 21159.00 21159.002001 28123.44 28123.442002 30105.84 30105.842003 35560.56 35560.562004 42489.45 42489.452005 67622.99 67622.992006 64862.22 64862.222007 80911.72 80911.722008 110673.63 110673
53、.632009 132518.26 132518.262010 154362.26 154362.262011 194580.79 194580.792012 211022.69 211022.692013 219622.31 219622.31 ggczsrforecast$fittedTime Series:Start = 2000 End = 2013 泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第20 頁(yè),共 31 頁(yè)Frequency = 1 xhat level2000 17614992005442 20054422002 2461907 24619072003 24
54、58737 24587372004 2747686 27476862005 3028671 30286712006 3712582 37125822007 4270790 42707902008 5237790 52377902009 6132128 61321282010 7026461 70264612011 8726344 87263442012 9794689 97946892013 11023870 110238705.觀測(cè)值和擬合值圖 par(cex=0.7) plot(fujian,2,type=o,xlab=時(shí)間,ylab=地方財(cái)政收入合計(jì)) lines(fujian,1-1,
55、dfczsrhjforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,3,type=o,xlab=時(shí)間,ylab=增值稅) lines(fujian,1-1,zzsforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,4,type=o,xlab=時(shí)間,ylab=營(yíng)業(yè)稅) lines(fu
56、jian,1-1,yysforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,5,type=o,xlab=時(shí)間,ylab=企業(yè)所得稅) lines(fujian,1-1,qysdsforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,6,type=o,xlab=時(shí)間,ylab=房產(chǎn)稅)
57、lines(fujian,1-1,fcsforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,7,type=o,xlab=時(shí)間,ylab=印花稅) lines(fujian,1-1,yhsforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8) plot(fujian,8,type=o,xlab=時(shí)間,ylab=公
58、共財(cái)政收入) lines(fujian,1-1,ggczsrforecast$fitted,1,type=o,lty=2,col=blue) legend(x=topleft,legend=c(觀測(cè)值,擬合值),lty=1:3,cex=0.8)6.獲得 2014 年和 2015 年的的各預(yù)測(cè)值 library(forecast)泰迪杯大學(xué)生數(shù)據(jù)挖掘競(jìng)賽論文報(bào)告第21 頁(yè),共 31 頁(yè) dfczsrhjforecast1=forecast.HoltWinters(dfczsrhjforecast,h=2) dfczsrhjforecast1 Point Forecast Lo 80 Hi 80
59、Lo 95 Hi 952014 20880968 18860732 22901204 17791284 239706522015 20880968 18024037 23737899 16511669 25250267 zzsforecast1=forecast.HoltWinters(zzsforecast,h=2) zzsforecast1 Point Forecast Lo 80 Hi 80 Lo 95 Hi 952014 2215998 2050501 2381495 1962893 24691042015 2215998 1981955 2450041 1858060 2573936
60、 yysforecast1=forecast.HoltWinters(yysforecast,h=2) yysforecast1 Point Forecast Lo 80 Hi 80 Lo 95 Hi 952014 1623526 1471717 1775335 13913541623526 1408840 1838212 1295192 1951859 qysdsforecast1=forecast.HoltWinters(qysdsforecast,h=2) qysdsforecast1 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年餐飲業(yè)油煙排放監(jiān)測(cè)與驗(yàn)收合同3篇
- 二零二五年度高新技術(shù)企業(yè)個(gè)人知識(shí)產(chǎn)權(quán)連帶責(zé)任保證擔(dān)保合同3篇
- 二零二五臨時(shí)客服人員服務(wù)協(xié)議3篇
- 2025版大型體育賽事贊助合同連帶擔(dān)保承諾書(shū)4篇
- 2025年西瓜種植與深加工一體化產(chǎn)業(yè)合作協(xié)議3篇
- 物業(yè)管理服務(wù)2025年度合同6篇
- 2025年學(xué)校物業(yè)管理與校園綠化養(yǎng)護(hù)與生態(tài)保護(hù)合同3篇
- 二零二五版智慧停車(chē)設(shè)施安裝與運(yùn)營(yíng)合同3篇
- 建筑工程外墻真石漆涂裝2025年度承包合同2篇
- 2025年度科研機(jī)構(gòu)項(xiàng)目臨時(shí)研究員勞動(dòng)合同4篇
- 高三課題研究報(bào)告范文
- 2024年初三數(shù)學(xué)競(jìng)賽考試試題
- 竇性心動(dòng)過(guò)速的危害
- 深基坑工程基坑土方開(kāi)挖及支護(hù)降水施工方案
- 2024年江西生物科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)帶解析答案
- 醫(yī)藥制造企業(yè)資本結(jié)構(gòu)優(yōu)化研究以貴州百靈為例
- GB 31335-2024鐵礦開(kāi)采和選礦單位產(chǎn)品能源消耗限額
- 醫(yī)院高風(fēng)險(xiǎn)意外事件應(yīng)急措施和救護(hù)機(jī)制
- 橋本甲狀腺炎-90天治療方案
- 【復(fù)合附件版】個(gè)人借車(chē)免責(zé)協(xié)議書(shū)簡(jiǎn)單
- 焊接工裝夾具設(shè)計(jì)手冊(cè)
評(píng)論
0/150
提交評(píng)論