![高數(shù)極限最新課件_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/c80b1605-d847-4500-a804-a24db2efb224/c80b1605-d847-4500-a804-a24db2efb2241.gif)
![高數(shù)極限最新課件_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/c80b1605-d847-4500-a804-a24db2efb224/c80b1605-d847-4500-a804-a24db2efb2242.gif)
![高數(shù)極限最新課件_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/c80b1605-d847-4500-a804-a24db2efb224/c80b1605-d847-4500-a804-a24db2efb2243.gif)
![高數(shù)極限最新課件_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/c80b1605-d847-4500-a804-a24db2efb224/c80b1605-d847-4500-a804-a24db2efb2244.gif)
![高數(shù)極限最新課件_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/c80b1605-d847-4500-a804-a24db2efb224/c80b1605-d847-4500-a804-a24db2efb2245.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、高數(shù)極限PPT課件 (2)一、極限存在準則一、極限存在準則1.夾逼準則夾逼準則(兩邊夾法則兩邊夾法則)準準則則 如如果果數(shù)數(shù)列列nnyx ,及及nz滿滿足足下下列列條條件件: :,lim,lim)2()3 , 2 , 1()1(azaynzxynnnnnnn 那那末末數(shù)數(shù)列列nx的的極極限限存存在在, , 且且axnn lim. .上述數(shù)列極限存在的準則可以推廣到函數(shù)的極限上述數(shù)列極限存在的準則可以推廣到函數(shù)的極限高數(shù)極限PPT課件 (2)準則準則 如果當(dāng)如果當(dāng))(00 xUx ( (或或Mx ) )時時, ,有有,)(lim,)(lim)2(),()()()1()()(00AxhAxgxhx
2、fxgxxxxxx 那末那末)(lim)(0 xfxxx 存在存在, , 且等于且等于A. .注意注意: :.,的極限是容易求的的極限是容易求的與與并且并且與與鍵是構(gòu)造出鍵是構(gòu)造出利用夾逼準則求極限關(guān)利用夾逼準則求極限關(guān)nnnnzyzy準則準則 1和和準則準則 1稱為稱為夾逼準則(兩邊夾法則)夾逼準則(兩邊夾法則).高數(shù)極限PPT課件 (2)例例1 1).12111(lim222nnnnn 求求解解,11112222 nnnnnnnnnnnnnn111limlim2 又又, 1 22111lim1limnnnnn , 1 由夾逼定理得由夾逼定理得. 1)12111(lim222 nnnnn高數(shù)
3、極限PPT課件 (2)x1x2x3x1 nxnx2.單調(diào)有界準則單調(diào)有界準則滿滿足足條條件件如如果果數(shù)數(shù)列列nx,121 nnxxxx單調(diào)增加單調(diào)增加,121 nnxxxx單調(diào)減少單調(diào)減少單調(diào)數(shù)列單調(diào)數(shù)列準準則則 單單調(diào)調(diào)有有界界數(shù)數(shù)列列必必有有極極限限.幾何解釋幾何解釋:AM高數(shù)極限PPT課件 (2)例例2 2.)(333的的極極限限存存在在式式重重根根證證明明數(shù)數(shù)列列nxn 證證,1nnxx 顯然顯然 ;是單調(diào)遞增的是單調(diào)遞增的nx, 331 x又又, 3 kx假假定定kkxx 3133 , 3 ;是是有有界界的的nx.lim存在存在nnx ,31nnxx ,321nnxx ),3(lim
4、lim21nnnnxx ,32AA 2131,2131 AA解解得得(舍去舍去).2131lim nnx高數(shù)極限PPT課件 (2)AC二、兩個重要極限二、兩個重要極限(1)1sinlim0 xxx)20(, xxAOBO 圓圓心心角角設(shè)設(shè)單單位位圓圓111sin,tan,222xOBAxOBAxOAC于是有面積扇形面積面積xoBD.ACO ,得,得作單位圓的切線作單位圓的切線,xOAB的圓心角為的圓心角為扇形扇形,BDOAB的高為的高為 00 ( 型)高數(shù)極限PPT課件 (2),tansinxxx , 1sincos xxx即即.02也也成成立立上上式式對對于于 x,20時時當(dāng)當(dāng) xxxcos
5、11cos0 2sin22x 2)2(2x ,22x , 02lim20 xx, 0)cos1(lim0 xx, 1coslim0 xx, 11lim0 x又又. 1sinlim0 xxx高數(shù)極限PPT課件 (2)例例3 3.cos1lim20 xxx 求求解解2202sin2limxxx 原原式式220)2(2sinlim21xxx 20)22sin(lim21xxx 2121 .21 高數(shù)極限PPT課件 (2)(2)exxx )11(lim)71828. 2( e00( )1lim(1),lim( )( )fxxxxxef xf x 其中( )1lim(1),lim( )( )fxxxef
6、 xf x 其中1 (型 )高數(shù)極限PPT課件 (2)例例4 4.)11(limxxx 求求解解xxx )11(1lim1)11(lim xxx原式原式.1e 例例5 5.)23(lim2xxxx 求求解解422)211()211(lim xxxx原原式式.2e 高數(shù)極限PPT課件 (2)三、小結(jié)三、小結(jié)1.兩個準則兩個準則2.兩個重要極限兩個重要極限夾逼準則夾逼準則; 單調(diào)有界準則單調(diào)有界準則 .; 1sinlim10 某某過過程程.)1(lim210e 某某過過程程,為某過程中的無窮小為某過程中的無窮小設(shè)設(shè) 高數(shù)極限PPT課件 (2)思考題思考題求極限求極限 xxxx193lim 高數(shù)極限
7、PPT課件 (2)思考題解答思考題解答 xxxx193lim xxxxx111319lim xxxxx 313311lim9990 e高數(shù)極限PPT課件 (2)._3cotlim40 xxx、一、填空題一、填空題:._sinlim10 xxx 、._3sin2sinlim20 xxx、._2sinlim5 xxx、._)1(lim610 xxx、練練 習(xí)習(xí) 題題._cotlim30 xxx、arc高數(shù)極限PPT課件 (2)xxx2tan4)(tanlim2 、._)1(lim72 xxxx、._)11(lim8 xxx、xxxxsin2cos1lim10 、xxaxax)(lim3 、二、求下列各極限二、求下列各極限:nnnn)11(lim42 、高數(shù)極限PPT課件 (2) 5 5、nnnn1)321(lim 三、三、 利用極限存在準則證明數(shù)列利用極限存在準則證明數(shù)列,.222,22, 2 的極限存在,并求的極限存在,并求出該極限出該極限 . .高數(shù)極限PPT課件 (2)一、一、1 1、 ; 2 2、32; 3 3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村安全飲用水施工方案
- 人行道磚鋪設(shè)冬季施工方案
- 英語語法精講
- 志愿者證申請書
- 加入學(xué)習(xí)部的申請書
- 初一期中學(xué)習(xí)報告
- 青海省海東市2024-2025學(xué)年九年級上學(xué)期期末語文試題(解析版)
- 廣西河池市2024-2025學(xué)年七年級上學(xué)期期末語文試題(解析版)
- 懷孕調(diào)崗申請書
- 國外大學(xué)申請書
- 高支模專項施工方案(專家論證)
- 《物流與供應(yīng)鏈管理-新商業(yè)、新鏈接、新物流》配套教學(xué)課件
- 房地產(chǎn)標(biāo)準踩盤表格模板
- 物聯(lián)網(wǎng)項目實施進度計劃表
- 學(xué)校校園安全巡邏情況登記表
- 光纜線路工程段終版施工圖
- 礦井年度災(zāi)害預(yù)防和處理計劃
- 畢業(yè)論文-基于Java Web的模擬駕??荚囅到y(tǒng)設(shè)計與實現(xiàn)
- MDD指令附錄一 基本要求檢查表2013版
- 新部編人教版四年級下冊道德與法治全冊教案(教學(xué)設(shè)計)
- 人美版高中美術(shù)選修:《繪畫》全冊課件【優(yōu)質(zhì)課件】
評論
0/150
提交評論