




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、固體物理習(xí)題解答固體物理習(xí)題解答Chapter 4 Chapter 4 problemsproblems(b) The time-average total energy per atomSubstitute us = u cos(t sKa) into the expression)(2sin)cos1 (sin)(sinsin )(cos)cos1(21)(sin21 )sin(sin)cos()cos1(21 )(sin21 sin)sin( cos)cos()cos(21 )(sin21 ) 1(cos)cos(21 )sin(2122222222222222222222sKatKaK
2、asKatKasKatKaCusKatuMsKatKasKatKaCusKatuMKasKatKasKatsKatCusKatuMKastusKatuCsKatuMEssssssssThe total energy average over time)cos22(4 sin21)cos1 (212141 )(2sin)cos1 (sin )(sinsin)(cos)cos1(2121 )(sin2121 222222222222220220222/20KaCuuMNKaKaNCuuNMsKaxKaKasKaxKasKaxKadxCusKaxdxuMEdtEsswhere N is the nu
3、mber of the atoms.The time-average total energy per atom222)cos1 (2141 /uKaCuMNEFrom the dispersion relation, 2/sin422KaMCwe have).cos1 (212/sin4122KaCKaCM2222221 )cos1 (2141uMuKaCuMThus 2. Continuum wave equationWe have the equation of the motion)2(1122ssssuuuCdtudMIn the long wavelength limit, a,
4、the difference of the displacements of nearest atoms is very small. Hence us(t) could be treated as a continuous function u(x, t).22222 )(2)()(dxudCaadxduadxduCxuaxuaxuCdtudMxaxThen we haveThe solution of this equation is )(exp),(0tKxiutxuwith the dispersion relation, 2/sin422KaMCIn the long wavelen
5、gth limit, Ka 1,2222)2/(4KvKaMCwhereMCav22Therefore the equation of motion reduces to the continuum wave equation22222dxudvdtud3. Basis of two unlike atomsFrom the equation of motions)2()2(12221221ssssssvuuCdtvdMuvvCdtudMWe have the solutions)(exp)(exptKaivvtKaiuuss(1)(2)Substitute Eq(2) into Eq(1)C
6、veCuvMCueCvuMiKaiKa2) 1(2)1 (2212(3)(4)At the Brillouin zone boundary K = Kmax = /a, we haveCvvMCuuM2222120)2(0)2(2212vCMuCMi.e.122 when , 0MCvor222 when , 0MCui.e. these two lattices act as if decoupled: one lattice remains at rest while the other lattice moves4. Kohn anomalyConsidering the interac
7、tions between p nearest planes, we have the dispersion relation012)cos1 (2pjjjKaCMSupposingpaapkACp0sinwe have1012)cos1 (sin2 )cos1 (2ppppKapaapkMApKaCMwith A and k0 are constants and p runs over all integers,Then102sinsin2ppKaapkMAKWhen K = k01022sin2papkMAKinfinite is sin )/( 0sin 02002limppapkaka
8、pki.e. is infinite when K = k0.K2Thus a plot of 2 vs K (or vs K) have a vertical tangent at K = k0: there is a kink at k0 in the phonon dispersion relation (K).5. Diatomic chainWe have the equation of motions)(10)()()(10122122ssssssssssvuvuCdtvdMuvCuvCdtudMThe solutions are)(exp)(exptKaivvtKaiuussSu
9、bstitute the solutions into equation of motionsCveCuMvCueCvMuiKaiKa11)10(11)10(22The homogenous linear equations have a solution only if the determinant of the coefficients of the unknown u, v vanishes.011 )exp(10)exp(10 1122MCiKaCiKaCMCthe dispersion relation is)cos1 (20111122KaMCor0)cos1 (20222242
10、KaCCMM2/1MCK a022022Discussions:(1) K = 00 and ,2222MC(2) K = /aMCMC2 and ,2022Obviously, the acoustic branch indicates the interactions between molecules while the optical branch shows the interactions inside the molecules. 6. Atomic vibrations in metalrRSuppose the restoring force is due to the el
11、ectric charge within the sphere of the radius r centered to the equilibrium position.)()(rEqrFAs shown in the figure, the electric field in a sphere with the charge homogenous distributed isrRerreRrrrqrE323324/34/3)(The equation of motionrReFqdtrdM3222i.e.322222with , 0MRerdtrd(a) The frequency of a
12、 single ion oscillationFor a harmonic oscillation )exp(0tirrwhere 2/132MRe(b) Estimate the value of this frequency for sodiumSodium has a bcc structure with lattice constant a = 4.225 (p. 23).Then R = 31/2a/4 = 1.83 =1.83E8 cmM 23Mp 3.84E23 g 4.8E10/3.43E23(1.83E8)31/2 3.3E13 s1(c) Estimate the velo
13、city of the sound in metalSuppose the dispersion relation is = vgK for metal, where vg is constant.In estimation, we take K = /a = /4.225E8 1E8 cm-1vg = /K 3E13/1E8 =3E5 cm/s7. Soft phonon modes(a) Force constant of the Coulomb interactionThe Coulomb between atom s and atom s+p is spspsppspuurererU0
14、22) 1() 1()(Then 20232222221 ) 1(221) 1( ) 3(21)()(pCparppparparspspCUrepaeOrUrUparUrUwhere 332) 1(2apeCppC(b) The dispersion relation03200332203320102)cos1 () 1(21sin )cos1 () 1(21sin4 )cos1 () 1(22)cos1 (2 )cos1 (2)cos1 (2 )cos1 (22ppppppppCRpppKapKapKapaeKaMpKaapeMKaMpKaCMKaCMpKaCM132202)cos1 () 1(21sin i.e.ppppKaKa3220/ and /4 whereaeM(c) Discussions0313202) 12(21 )cos1 () 1(1nppnpp(1) At the first Brillouin zone boundary, Ka = 1313130387)2() 12( nnnnnnnn13202471nn2 is negative when 1374nn(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年體育經(jīng)紀(jì)人的重要行業(yè)信息試題及答案
- 植保員的職業(yè)教育與持續(xù)學(xué)習(xí)試題及答案
- 2024年救生員急救知識(shí)考題
- 如何培養(yǎng)良好的繁育團(tuán)隊(duì)合作試題及答案
- 備考2024年農(nóng)業(yè)植保員考試的試題及答案
- 跨境電商物流集散中心項(xiàng)目可行性研究報(bào)告(僅供參考)
- 高效農(nóng)業(yè)灌溉系統(tǒng)建設(shè)項(xiàng)目可行性研究報(bào)告(參考模板)
- 2024年體育經(jīng)紀(jì)人的實(shí)踐要求試題及答案
- 倉儲(chǔ)物流管理系統(tǒng)建設(shè)可行性研究報(bào)告(范文模板)
- 用電安全課件圖片大全
- 重癥護(hù)理文書書寫規(guī)范
- 2024年四川省綿陽市中考化學(xué)試題(含答案解析)
- 電機(jī)與電氣控制技術(shù)(第3版)(微課版)(AR版)授課計(jì)劃
- 學(xué)校德育工作手冊(cè)(組織機(jī)構(gòu)、職責(zé)、流程、制度、要求)
- 2025年開封大學(xué)單招職業(yè)技能測(cè)試題庫必考題
- 高中主題班會(huì) 揚(yáng)中國精神承青年擔(dān)當(dāng)團(tuán)課課件-高一上學(xué)期愛國主義教育主題班會(huì)
- 2025年大學(xué)校園防詐知識(shí)競(jìng)賽題庫200題(含答案)
- 情感營銷在社交網(wǎng)絡(luò)中的應(yīng)用-深度研究
- 景區(qū)物業(yè)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 《新能源乘用車二手車鑒定評(píng)估技術(shù)規(guī)范 第1部分:純電動(dòng)》
- 登革熱診療方案(2024年版)
評(píng)論
0/150
提交評(píng)論