固體物理習題解答Chapter 4 problems_第1頁
固體物理習題解答Chapter 4 problems_第2頁
固體物理習題解答Chapter 4 problems_第3頁
固體物理習題解答Chapter 4 problems_第4頁
固體物理習題解答Chapter 4 problems_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、固體物理習題解答固體物理習題解答Chapter 4 Chapter 4 problemsproblems(b) The time-average total energy per atomSubstitute us = u cos(t sKa) into the expression)(2sin)cos1 (sin)(sinsin )(cos)cos1(21)(sin21 )sin(sin)cos()cos1(21 )(sin21 sin)sin( cos)cos()cos(21 )(sin21 ) 1(cos)cos(21 )sin(2122222222222222222222sKatKaK

2、asKatKasKatKaCusKatuMsKatKasKatKaCusKatuMKasKatKasKatsKatCusKatuMKastusKatuCsKatuMEssssssssThe total energy average over time)cos22(4 sin21)cos1 (212141 )(2sin)cos1 (sin )(sinsin)(cos)cos1(2121 )(sin2121 222222222222220220222/20KaCuuMNKaKaNCuuNMsKaxKaKasKaxKasKaxKadxCusKaxdxuMEdtEsswhere N is the nu

3、mber of the atoms.The time-average total energy per atom222)cos1 (2141 /uKaCuMNEFrom the dispersion relation, 2/sin422KaMCwe have).cos1 (212/sin4122KaCKaCM2222221 )cos1 (2141uMuKaCuMThus 2. Continuum wave equationWe have the equation of the motion)2(1122ssssuuuCdtudMIn the long wavelength limit, a,

4、the difference of the displacements of nearest atoms is very small. Hence us(t) could be treated as a continuous function u(x, t).22222 )(2)()(dxudCaadxduadxduCxuaxuaxuCdtudMxaxThen we haveThe solution of this equation is )(exp),(0tKxiutxuwith the dispersion relation, 2/sin422KaMCIn the long wavelen

5、gth limit, Ka 1,2222)2/(4KvKaMCwhereMCav22Therefore the equation of motion reduces to the continuum wave equation22222dxudvdtud3. Basis of two unlike atomsFrom the equation of motions)2()2(12221221ssssssvuuCdtvdMuvvCdtudMWe have the solutions)(exp)(exptKaivvtKaiuuss(1)(2)Substitute Eq(2) into Eq(1)C

6、veCuvMCueCvuMiKaiKa2) 1(2)1 (2212(3)(4)At the Brillouin zone boundary K = Kmax = /a, we haveCvvMCuuM2222120)2(0)2(2212vCMuCMi.e.122 when , 0MCvor222 when , 0MCui.e. these two lattices act as if decoupled: one lattice remains at rest while the other lattice moves4. Kohn anomalyConsidering the interac

7、tions between p nearest planes, we have the dispersion relation012)cos1 (2pjjjKaCMSupposingpaapkACp0sinwe have1012)cos1 (sin2 )cos1 (2ppppKapaapkMApKaCMwith A and k0 are constants and p runs over all integers,Then102sinsin2ppKaapkMAKWhen K = k01022sin2papkMAKinfinite is sin )/( 0sin 02002limppapkaka

8、pki.e. is infinite when K = k0.K2Thus a plot of 2 vs K (or vs K) have a vertical tangent at K = k0: there is a kink at k0 in the phonon dispersion relation (K).5. Diatomic chainWe have the equation of motions)(10)()()(10122122ssssssssssvuvuCdtvdMuvCuvCdtudMThe solutions are)(exp)(exptKaivvtKaiuussSu

9、bstitute the solutions into equation of motionsCveCuMvCueCvMuiKaiKa11)10(11)10(22The homogenous linear equations have a solution only if the determinant of the coefficients of the unknown u, v vanishes.011 )exp(10)exp(10 1122MCiKaCiKaCMCthe dispersion relation is)cos1 (20111122KaMCor0)cos1 (20222242

10、KaCCMM2/1MCK a022022Discussions:(1) K = 00 and ,2222MC(2) K = /aMCMC2 and ,2022Obviously, the acoustic branch indicates the interactions between molecules while the optical branch shows the interactions inside the molecules. 6. Atomic vibrations in metalrRSuppose the restoring force is due to the el

11、ectric charge within the sphere of the radius r centered to the equilibrium position.)()(rEqrFAs shown in the figure, the electric field in a sphere with the charge homogenous distributed isrRerreRrrrqrE323324/34/3)(The equation of motionrReFqdtrdM3222i.e.322222with , 0MRerdtrd(a) The frequency of a

12、 single ion oscillationFor a harmonic oscillation )exp(0tirrwhere 2/132MRe(b) Estimate the value of this frequency for sodiumSodium has a bcc structure with lattice constant a = 4.225 (p. 23).Then R = 31/2a/4 = 1.83 =1.83E8 cmM 23Mp 3.84E23 g 4.8E10/3.43E23(1.83E8)31/2 3.3E13 s1(c) Estimate the velo

13、city of the sound in metalSuppose the dispersion relation is = vgK for metal, where vg is constant.In estimation, we take K = /a = /4.225E8 1E8 cm-1vg = /K 3E13/1E8 =3E5 cm/s7. Soft phonon modes(a) Force constant of the Coulomb interactionThe Coulomb between atom s and atom s+p is spspsppspuurererU0

14、22) 1() 1()(Then 20232222221 ) 1(221) 1( ) 3(21)()(pCparppparparspspCUrepaeOrUrUparUrUwhere 332) 1(2apeCppC(b) The dispersion relation03200332203320102)cos1 () 1(21sin )cos1 () 1(21sin4 )cos1 () 1(22)cos1 (2 )cos1 (2)cos1 (2 )cos1 (22ppppppppCRpppKapKapKapaeKaMpKaapeMKaMpKaCMKaCMpKaCM132202)cos1 () 1(21sin i.e.ppppKaKa3220/ and /4 whereaeM(c) Discussions0313202) 12(21 )cos1 () 1(1nppnpp(1) At the first Brillouin zone boundary, Ka = 1313130387)2() 12( nnnnnnnn13202471nn2 is negative when 1374nn(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論