![第二單元(因數和倍數)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/12/54d7e953-c8a9-4dc7-adec-b468449fd5da/54d7e953-c8a9-4dc7-adec-b468449fd5da1.gif)
![第二單元(因數和倍數)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/12/54d7e953-c8a9-4dc7-adec-b468449fd5da/54d7e953-c8a9-4dc7-adec-b468449fd5da2.gif)
![第二單元(因數和倍數)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/12/54d7e953-c8a9-4dc7-adec-b468449fd5da/54d7e953-c8a9-4dc7-adec-b468449fd5da3.gif)
![第二單元(因數和倍數)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/12/54d7e953-c8a9-4dc7-adec-b468449fd5da/54d7e953-c8a9-4dc7-adec-b468449fd5da4.gif)
![第二單元(因數和倍數)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/12/54d7e953-c8a9-4dc7-adec-b468449fd5da/54d7e953-c8a9-4dc7-adec-b468449fd5da5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第二單元課時教學設計學科: 數學 五 年級 備課人: 劉吉香課題因數和倍數計劃課時2-1教學內容分析本單元在引入因數和倍數的概念時與以往的教材有所不同。由于乘除法本身就存在著互逆關系,用乘法算式(如bna)同樣可以表示整除的含義。因此,本套教材中沒有用數學化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×612,通過這個乘法算式直接給出因數和倍數的概念。這樣,學生不必通過12÷26得出12能被2整除,進而2是12的因數,12是2的倍數。再通過12÷62得出12能被6整除,進而6是12的因數,12是6的倍數,大大簡化了敘述和
2、記憶的過程。在這兒,用一個乘法算式2×612可以同時說明“2和6都是12的因數,12是2的倍數,也是6的倍數?!苯又?,通過3×412,進一步鞏固因數和倍數的概念。最后,教材對整數0進行特殊說明,以明確本單元中數的研究范圍。教學目標1. 掌握因數和倍數的概念。2. 知道因數和倍數之間的聯系和區(qū)別。3. 培養(yǎng)抽象思維能力。教學重難點1. 理解并掌握因數和倍數的概念。2. 知道因數和倍數之間的聯系和區(qū)別。教具學具準備教師準備:教材主題圖(課件)教學設計思路(含教法設計、學法指導)教學因數和倍數概念時,可以結合教材上的直觀圖(2行飛機,每行6架)引導學生列出乘法算式2×6
3、=12或6×2=12,再根據所列的乘法算式直接給出因數和倍數的概念。接下來,再結合直觀圖(3行飛機,每行4架)進一步鞏固因數和倍數的概念。最后,讓學生脫離情境圖,想一想12還有哪些因數,引導學生列出乘法算式1×12=12或12×1=12,概括出“1和12都是12的因數,12是1和它本身的倍數”。在此基礎上,教師可以引導學生利用一般的乘法算式a×b=c歸納出因數和倍數的概念:a、b都是c的因數,c是a和b的倍數。教學環(huán)節(jié)教學內容與教師活動學生活動設計意圖一、創(chuàng)設情景,引入課題。1. 同學們,你們喜歡看軍事演習嗎?下面這幅圖畫的是中國航空軍事演習中的一幅畫面
4、,12架飛機排成兩排,每排6 架。(出示投影)2. 像這樣的情形我們用教學式子可以怎樣表示?(提示學生用乘法算式來表示)3. 指出因數和倍數的概念:像這樣,我們說2和6是12的因數,12是2的倍數,也是6的倍數。4. 下面是軍事演習中的另一幅畫面。如果排成3排,每排4架,可以用什么式子表示?由這個式子你能得出什么結論?5. 非常正確,那么,大家能自己找出 12的其他因數嗎?巡視,察看學生做題情況。6. 肯定學生,提醒:為了方便,在研究因數和倍數的時候,我們所說的數一般指的是整數(不包括 0)。7. 根據上面的分析,我們可以得出(引導學生一起總結):如果兩個非零整數相乘得到另-個整數,我們就說前
5、兩個整數是后一個的因數,后一個是前兩個數的倍數。8. 那么大家能用-般的乘法算式來表示、歸納出因數和倍數的概念嗎?過渡:非常正確。下面我們就一起來學習-下因數和倍數。(板書課題)1. 回答:非常喜歡。觀看主題圖。2. 回顧乘法的知識,回答:可以用2x6 = 12來表示。3. 認真聽講,明確因數和倍數的概念。4. 可以用式子3x4 = 12來表示。根據因數和倍數的概念可以知道,3和4也是12 的因數,12是3和4的倍數。5. 根據概念,動筆算一算,找12 的因數和倍數:因為 1 xl2 =12,所以 1 和 12 是 12 的因數,12是1和12的倍數。6. 聽講,識記。7. 隨老師一起總結。8
6、.先獨立思考,再小組討論,得出表示式:因數X因數=倍數。由學生感興趣的話題給出因數和倍數的概念。讓學生利用因數和倍數的概念自己發(fā)現12 的其他因數。用數學式表示,讓學生在本質上理解因數與倍數的關系。二、探究因數和倍數的求法及其特點。1. 讓學生看教材第 18 頁例 1:18的因數有哪幾個?你能用幾種方法求呢?先請學生想一想:18 可以由哪幾個數相乘得到?2. 很好,除了寫出乘法算式,我們是否可以通過列除法算式來找因數?3. 這樣我們就可以得到 18 的因數有哪些?4. 我們還可以怎樣表示 18 的因數?提示學生看教材的表示方法。5. 下面請同學們做課本第 13 頁的“做一做”,找出 30 和
7、36 的因數。(讓學生在小組內活動)6. 好,同學們都完整地找出了 30和36 的因數。大家再分析一下這些因數,你能從中得出什么結論(因數的特點)?(適時引導,及時表揚,教師板書結論)7. 引導學生學習例2:學習了一個數的因數的求法,我們再來看看倍數應該怎樣求。提示思考:怎樣才能得到一個數的倍數?8. 同樣,倍數我們也可以用集合圈表示。2的倍數的集合該怎么表示?9. 下面再請同學們做課本第 14頁“做一做”:3 和 5 的最小倍數分別是多少?有最大倍數嗎?10. 由此大家可以總結出什么結論?一個數的倍數有什么特點?(引導學生自己總結,教師同步板書)1. 可以把積是 18 的乘法算式列出,就能求
8、出它的因數了。18= 1 x18 18 = 2 x918 = 3 x62. 根據老師的提示列除法算式。8÷l =18 l8÷2 二9 l8÷3 二 63. 綜合乘法算式和除法算式得出:18 的因數有1、2、3、6、9、18。4.可以用集合圖表示。5. 獨立做“做一做”的題目,做完后交流。小組匯報結果:(1)我們組找到的30 的因數有:1、2、3、5、6、10、15、30。(2)我們組找到的36 的因數有:1、2、3、4、6、9、12、18、36。6. 小組討論,發(fā)現:不管是 30還是36,它們的最小因數都是 1,最大因數都是它們本身。7看例2:你能找出多少個2的倍
9、數?思考明確:用該數乘以任意一個非零自然教所得的積都是該數的倍數。2 xl = 2,2 x2 =4,2 x3=6······所以2的倍數有2、4、6······8用集合圖表示2的倍數:9. 根據倍數的求法很快得出:3的最小倍數是3,5 的最小倍數是5;它們沒有最大倍數。10. 討論,總結:一個數的最小倍數是它自身,沒有最大倍數;一個數的倍數的個數是無限的。引導學生用不同的方法求出 18的因數。教得方法后,放手讓學生自己練習因數的求法。引導學生總結因數的特點,培養(yǎng)學生分析、總結
10、問題的能力。總結倍數的特點,培養(yǎng)學生歸納問題的能力。三、閱讀材料,拓展知識。讓學生自 由閱讀教材第 14 頁的閱讀材料“完全數”。閱讀教材上的材料,交流認識。拓展相關知識。作業(yè)設計(可附頁)1.24的因數有哪些?分別用乘法算式和除法算式寫出,并用集合圈表示。2. 寫出下列各數的因數或倍數。因數倍數(寫出 4個)93146271333173. 把下列各數分別填人相應的圈中。 4 16 28 49 30 56 81 1447的倍數 8的倍數4. 先分別列出36和48 的因數,再找出既是36的因數又是48 的因數的數。36 的因數:_48 的因數:_既是36 的因數又是48 的因數的數:_板書設計因
11、數和倍數18 = I x 18 18 ÷1 = 1818 = 2 x 9 l8÷2 二 918 = 3 X 6 18 ÷3 二 6 一個數的最小因數是1,最大因數是它本身。 一個數的最小倍數是它自身,沒有最大倍數,一個數的倍數的個數是無限的。教學反思或案例分析檢查意見檢查人時 間課時教學設計學科: 數學 五 年級 備課人: 劉吉香課題因數和倍數(練習二)計劃課時2-2教學內容分析 因數和倍數是最基本的兩個概念,理解了因數和倍數的含義對于一個數的因數的個數是有限的,倍數的個數是無限的等結論自然就掌握了,對于后面的公因數、公倍數等概念的理解也是水到渠成。教學目標1.
12、鞏固倍數和因數的概念和特征。2. 能熟練求一個數的因數和倍數。教學重難點能熟練求一個數的因數和倍數。教具學具準備教師準備:練習二的練習題(課件)。教學設計思路(含教法設計、學法指導) 通過復習引入,讓學生回顧上節(jié)課的知識,再通過形式多樣的鞏固練習,培養(yǎng)學生探索發(fā)現的能力,舉一反三的意識,初步滲透公因數和公倍數的概念。教學環(huán)節(jié)教學內容與教師活動學生活動設計意圖一、復習引入。1. 復習提問:同學們,在“因數和倍數”中,我們學習了哪些知識?(學生可相互補充)2. 過渡:這節(jié)課我們就通過練習來鞏固一下這些知識點。同學們準備好了嗎?1. 回顧上節(jié)課知識,積極匯報:學習了因數和倍數的概念和特征;知道了一個
13、數的最小因數是 1,最大因數是它本身;一個數的最小倍數是它自身,沒有最大倍數,一個數的倍數的個數是無限的。2. 信心百倍地進入課堂。復習知識點,為練習課作準備。二、練習鞏固。1. 課件出示練習二第 1 題:15 的因數有哪些?15 是哪些數的倍數?(提醒學生注意審題)2. 組織學生匯報結果。3. 課件出示練習二第2題:找36和60的因數。讓學生比賽找因數,看誰找得又完整又快。4. 及時表揚學生,引導提問:觀察這兩組因數,你發(fā)現了什么?(適當提示)5.課件出示練習二第3 題:找 8和9的倍數。6. 在這道題中,你發(fā)現了什么?7. 同學們真能干。下面同學們做一做第 4題,看誰做得又對又快。學生做完
14、后,教師組織核對答案,集體訂正。1. 認真審題:第一問是求 15的因數;第二問其實還是求 15 的因數。2. 動筆計算,看誰找得快,積極匯報結果:15 的因數有 1、3、5、15;15也是 1、3、5、15 的倍數。3. 快速審題,比賽找因數,注意不要漏找,先找出來的學生匯報:36 的因數有 1、2、3、4、6、9、12、18、36;60 的因數有 1、2、3、4、5、6、10,12,15 ,20,30,4. 觀察,在教師的引導下發(fā)現:1、2、3、4、6、12這些數既是 36的因數,也是60 的因數。5. 比賽,看誰找得快,匯報結果。6. 有了上題的經驗,很快發(fā)現:72和144既是8 的倍數又
15、是9的倍數。7. 自主做練習,完成表格。集體訂正。培養(yǎng)細心審題的習慣。此題比較簡單,可放手讓學生自己練習。培養(yǎng)探索發(fā)現的能力。舉一反三,初步滲透公因數和公倍教的概念。三、拓展提高。1. 課件出示練習二第 5 題,讓學生認真審題,自主作出判斷。2. 誰來說說第一種說法為什么是錯誤的?(指名回答,如學生回答不了,教師適當提示)3. 不錯,看來同學們對倍數和因數的概念理解得非常透徹了。那第二種說法呢?(指名回答)4. 那第三、四種說法呢?你發(fā)現了什么?1. 認真讀題,匯報答案。(可能很多同學的答案不一樣)正確答案如下:前兩個說法錯誤,后兩個說法正確。2. 結合因數和倍數的概念思考錯誤的原因,討論,匯
16、報:因數和倍數是相對的概念,我們不能說“36是倍數,9是因數”,應該說“36是9的倍數,9是36 的因數”。3. 這種說法較容易判斷,很快說出理由:一個數的倍數是無窮多個的,所以這種說法錯誤。4. 結合因數和倍數的概念回答其正確的原因。討論發(fā)現:所有自然數的最小因數都是1,也就是說 1是所有自然數共有的因數。適當加大練習難度,提高解決問題的能力。澄清因數和倍數的概念本質,力求準確表達。四、做猜數游戲。讓學生同桌合作,練習第6題“猜數游戲”。提示答案:( 1 ) 42 ; ( 2) 18 ; ( 3 ) 1 ,教師巡視活動情況。同桌合作,你說我猜,自由活動。逆向思維,進一步加深對因數和倍數的理解
17、。五、閱讀材料,發(fā)現規(guī)律。1. 讓學生自主閱讀教材第 16 頁下面的材料,看看能否發(fā)現什么規(guī)律。2. 讓學生任意舉例,驗證自 己發(fā)現的規(guī)律。教師適時指導)1. 自主閱讀,動筆算一算,小組討論,猜想:同一個數的兩個倍數的和,仍然是這個教的倍數。2. 任意寫出一個數(不要太大),再寫出它的兩個倍數,然后將這兩個倍數相加,看結果是不是這個數的倍數。如:寫出數 11,再寫它的兩個倍數22和33,將 22和33相加得55,55 仍然是 11 的倍數,即獵想得以驗證。培養(yǎng)學生由想像推導規(guī)律的能力。作業(yè)設計(可附頁)1、說一說,誰是因數,誰是倍數。36和9 28和4 72和8 7和49 5和40 10和42
18、、判斷:(1)3是因數,9是倍數。()(2)8是16的因數。(3)4.2是0.6的倍數。(4)15的因數有3和5。(5)13的因數只有1和13。(6)在140中,36是4的最大倍數。板書設計隨機板書教學反思或案例分析檢查意見檢查人時間學科: 數學 五 年級 備課人: 劉吉香課題2、5、3的倍數的特征(第一課時)計劃課時2-3教學內容分析這部分內容是在因數、倍數的基礎上進行教學的,是求最大公因數、最小公倍數的重要基礎,從而也是學習約分和通分的必要前提。學生的分數運算是否熟練,取決于約分和通分掌握得是否熟練,而約分和通分是否熟練,在很大程度上取決于能不能很快地根據分子、分母的特征看出分子和分母有什
19、么公因數,能不能很快地求出幾個分數的分母的公倍數。因此,熟練掌握2、5、3的倍數的特征,具有十分重要的意義。教學目標1、 通過自主探索,掌握2、5、3的倍數的特征。2、 能判斷一個數是不是2、5、3的倍數。3、 知道奇數和偶數,能判斷一個數是偶數還是奇數。教學重難點2、5、3的倍數的特征。3的倍數的特征是難點。教具學具準備17、18頁的主題圖。教學設計思路(含教法設計、學法指導)教學時,可以先讓學生觀察情境圖,并聯想在生活中哪兒還見過雙數、單數,如街道或胡同一邊的門牌號是雙數,另一邊是單數。接下來,讓學生思考:為什么這些數稱為雙數?它們和2有什么聯系?(學生在生活中已經具備了“雙”即為“2個”
20、的經驗。)引導學生列出它們與2的倍數關系,說明這些數都是2的倍數。也可以讓學生聯系前面學過的2的倍數的求法,說出若干個2的倍數。在此基礎上,引導學生通過觀察,發(fā)現這些數的個位上都是0、2、4、6、8,從而形成猜想:所有2的倍數的個位上都是0、2、4、6、8。接下來,介紹偶數和奇數的概念。我們在這個單元中一般不考慮0,在這兒需要作一個特殊說明,因為0也是2的倍數,因此0也是偶數。教學環(huán)節(jié)教學內容與教師活動學生活動設計意圖一、引入新課。講解導入:同學們1,我們在前幾節(jié)課中已經掌握了倍數和因數的特征。像2、3、5 這些特殊的數,它們的倍數又有哪些特征呢?這節(jié)課我們就一起來學習。(板書課題)認真聽講,
21、思考2、5、3這些特殊的數的倍數可能有哪些特征。讓學生帶著問題進入新課。二、探究2的倍數的特征。1. 引導:同學們都看過電影吧?電影票的票號和電影院入口一般都是怎樣設置的?2. 出示教材第 17 頁主題圖,問:雙號的號碼有什么特點?3,引導學生明確奇數和偶數的概念:在自然數中,是2 的倍數的數叫做偶數(0也是偶數),不是2 的倍數的數叫做奇數。(板書)4. 組織學生做“你說我判斷”的游戲:同桌合作,一個同學任意說一個數,另一個同學判斷一下對方說的是奇數還是偶數;交換角色再做。同桌之間互相說一些教,并判斷是偶數還是奇數。5. 出示“做一做”的題目,讓學生完成。(巡視;學生做完后集體訂正)1. 交
22、流并匯報自己看電影的情況,如:票號為單號的從單號入口進去,票號為雙號的從雙號人口進去。2. 看教材主題圖,小組討論,動筆寫一寫,匯報:(1)雙號數都是2的倍數。(2)對于雙號數,有2 =1 x2,4 = 2 x 2 ,6 = 3 x 2 ,8 = 4 x 2 , 10 = 5x2,······它們的個位一般都是0、2 ,4 ,6 ,8,3. 看教材奇數和偶數的定義,理解并識記。注意0也是偶數。4. 跟同桌合作,做“你說我判斷”的游戲。有意說出“0”,考考對方。5. 做“做一做”的練習。做完后訂正)從生活情景“雙號”引入課題。讓學生自主
23、觀察雙號的特點,總結出 2的倍數的特征。合作學習,培養(yǎng)協作意識。練習鞏固對奇數和偶數的理解。三、探究5的倍數的特征。1. 剛才我們學習了 2 的倍數的特征,了解了奇數和偶數的概念?,F在我來考考大家,看大家掌握得怎么樣:所有的同學,學號是奇數的請舉手。(停頓,等學生舉完手)所有的同學,學號是偶數的請舉手。2. 好,同學們對奇數和偶數掌捏得還是不錯。下面我們來繼續(xù)做游戲:學號是 5的倍數的同學請舉手。3. 同學們想一想,哪些數是5 的倍數?5 的倍數有哪些特征?4. 出示教材第 18 頁的表,讓學生找出 1 100 中 5 的倍數并涂上顏色。提問:涂一涂,你能從表中看出什么規(guī)律?(指名板演)5.
24、觀察一下這些數的個位數,你能得出什么結論?6. 讓學生做教材第 18 頁“做一做”的練習,先分別找出 2 和 5 的倍數。7. 讓學生再找一找既是 2的倍數又是5 的倍數的數。提問:你是怎么找到的?8. 不錯,這兩種方法都可以找到10的倍數。有些同學還發(fā)現了既是2的倍數又是5 的倍數的數一定是 10的倍數。同學們再觀察這些是 10 的倍數的數,大家能不能總結出 10 的倍數的特征?1. 想想自己的學號是奇數還是偶數,舉手。2. 想一想自己的學號是不是5的倍數,是 5的倍數的同學舉手。3. 思考問題,可能發(fā)現伎 5、10、15、20這類數都是 5的倍數。4. 被指名的學生板演,其他學生在書上做,
25、找出 5 的倍數并涂一涂。完成后發(fā)現:表格的第5列和第10列的數都是5的倍數。5. 發(fā)現:第5列教的個位數都是5,第 10列數的個位數都是 0。討論,研究,得到結論:是5的倍數的數,它的個位上的數字不是 5就是0。6. 回顧2、5 的倍數的特征,獨立做練習,小組代表匯報:2的倍數有 24、90、60、106、130、280;5 的倍數有35、90、15、60、75、130、280。7. 小組討論,代表匯報:卯、60、130、280 既是2 的倍數又是5的倍數。(1)我是這樣得到的:2 x5 =10,所以既是2的倍數又是5 的倍數的數一定是 10 的倍數,再在這些數中找到是10的倍數的教。(2)
26、我是這樣得到的:把2 的倍數和5的倍數看成兩個集合,找出它們共有的部分。8. 觀察,自主發(fā)現:10 的倍數的個位數上的數字都是0,這就是10的倍數的特征。在游戲中復習奇數和偶數,并引.出對 5的倍數的特征的思考。引導學生自己找 5 的倍數的排列規(guī)律,得出結論。由2和5 的共同倍數找出10的倍數,總結出 10 的倍數的特征。發(fā)散思維,多種方法找 10的倍數。四、探究3的倍數的特征。1. 剛才我們學習了2和5 的倍數的特征,那么 3 的倍數又有哪些特征呢?請同學們先把3 的倍數找出來,再進行小組討論,看看 3 的倍數有什么特征。2. 觀察這些數,大家能不能找到 3的倍數的特征?(給學生足夠的時間來
27、討論)3. 用老方法不能得出 3 的倍數的特征,怎么辦呢?提示:同學們再看看12這個數,研究一下它的個位和十位上的數字,看看能發(fā)現什么。4. 表揚學生的發(fā)現,鼓勵學生繼續(xù)探討:非常棒! 同學們再研究一下15、18、21,看看這三個數是不是也符合這個規(guī)律。5. 好! 現在大家是不是可以總結出3 的倍數的特征了?(教師同步板書)6. 非常正確! 現在同學們用自已得出的結論做“做一做”第 1 題,看看其他數是不是也是這樣的。7. 組織學生做“我說你判斷”的游戲:同桌兩個同學合作,一個任意說一個數,另一個判斷這個數是不是 3 的倍數。8. 讓學生自主完成“做一做”第 2題。1. 小組合作學習,列出一些
28、是3的倍數的教。3x1= 3 3x2= 6 3 x3= 9 3 x4= 123x5= 15 3x6= 18 3 x7= 21. . . . . .2. 根據找2、5 的倍數的特征的經驗,獵想3的倍數的特征可能與其個位數字的特征有關,發(fā)現:3、6、9的個位是3的倍數,12、15、18、21 這些數的個位卻并不是 3 的倍數,根據經驗無法得到結論。3. 根據教師的提示,再次研究12這個數,可能有些學生會發(fā)現:12的個位上的數不是3的倍數,但1 +2 = 3,即其個位數和十位數的和3 是3的倍數。4. 柳暗花明,興致高漲,小組合作,馬上動手研究其他三個數,發(fā)現:數15 中,有 1 +5 = 6,6
29、是3的倍數;數18 中,有 1 +8 = 9,9是3的倍數;數21 中,有2 +1 =3,3也是3的倍數。5。趁熱打鐵,組織語言,小組代表匯報:如果一個教所有數位上的數字相加的和是3 的倍數,那么這個一定是 3的倍數。6. 做“做一做”第 1 題,小組的同學比一比,看誰做得快。匯報結果:45、876是3的倍數。7. 同桌合作做游戲(交換角色做)。說教的那一方要注意:在自已把數說給同桌聽之前,自己應先在腦中判斷這個數是否是 3 的倍數,不然對方判斷得是否正確自己都不知道。已獨立完成“做一做”第 2題。制造認知沖突,讓學生發(fā)現用前面的經驗不能得出 3的倍數的特征。強調自主探索,讓學生經歷觀察一猜想
30、一推翻猜想一再觀察一再猜想一驗證的過程,體驗探索的樂趣和成功的喜悅。通過練·習和游戲鞏固 3的倍數的特征。五、總結。組織學生說說這節(jié)課學到了哪些知識以及有些什么收獲?;仡櫛竟?jié)課知識,匯報:( 1)這節(jié)課我學到了 2、5、3 的倍數的特征。(2)我知道了根據老經驗、老方法來學習未知知識有時候會行不通,這時我們就要另外想辦法,尋找問題的突破口,使問題得以解決??偨Y全課,滲透思維方法淪。作業(yè)設計(可附頁)1. 下列哪些數是2的倍數,而不是5 的倍數?在對應的括號內畫“”。8 10 24 120 88 185( ) ( ) ( ) ( ) () ()2. 找出下列各數中是3 的倍數的數。 4
31、5 76 121 273 690 1234 29 94 302 57 850 20733. 寫出三個既是3 的倍數又是2的倍數的數。4. 寫出三個是3 的倍數但不是2和5 的倍數的數。5. 在方框內填一個數字,使每個數都是 3的倍數。 口8 5口1 口34 78口 31口板書設計2、5、3 的倍數的特征 在自然數中,是2 的倍數的數叫做偶數(0也是偶數),不是2 的倍數的數叫做奇數。 個位上是0或5 的數,是5 的倍數。 如果一個數所有數位上的數字相加的和是3 的倍數,那么這個數一定是3的倍數。教學反思或案例分析檢查意見檢查人時間學科: 數學 五 年級 備課人: 劉吉香課題因數和倍數(第二課時
32、-練習三)計劃課時2-4教學內容分析 以前教材把2、5、3倍數的特征安排在兩節(jié)課,第一節(jié)教學2、5倍數的特征,第二節(jié)教學3的倍數特征。本冊教材安排在一節(jié)課完成,對于三分之一的學生學習起來余力不夠。要在本節(jié)課通過各種形式的練習,使學生掌握2、5、3的倍數特征。教學目標1. 通過練習鞏固 2、5、3 的倍數的特征。2. 能利用 2、5、3 的倍數的特征解決日常生活中的一些問題。 教學重難點能利用 2、5、3 的倍數的特征解決日常生活中的一些問題。教具學具準備數字卡片、練習三的情景圖。教學設計思路(含教法設計、學法指導)先通過復習、回顧奇數、偶數、2、5、3的倍數的特征,再通過多種形式的練習,讓學生
33、自主完成哪些數是2的倍數,3的倍數,5的倍數,同時是2、3的倍數,2、5的倍數,3、5的倍數,2、3、5的倍數。訓練學生的審題能力以及快速找出有用信息的能力。教學環(huán)節(jié)教學內容與教師活動學生活動設計意圖一、復習引入。1. 引導學生簡單回顧上節(jié)課的知識。2. 引入新課:這節(jié)課我們通過練習來鞏固上節(jié)課的知識。1. 匯報已學知識:奇數和偶數;2、5、3的倍數的特征。2. 進入練習。復習舊知,引入練習。二、練習鞏固。1. 在我們的日常生活中,哪些數是奇數,哪些數是偶數?2組織學生同桌做“我說你判斷”的游戲:一個入說一個數,另一個人判斷這個數是不是2、5、3 的倍數。3. 讓學生做練習三第4 題,指兩名學
34、生板演。集體訂正。4. 出示第 5 題情景圖,讓學生迅速判斷。5. 出示第6題主題圖,引導學生讀懂題意,明確問題。1. 回顧日常生活中的奇數和偶數,討論,匯報:我家門牌號是 601,是奇數;課本上左邊的頁碼是偶數,右邊的頁碼是奇數;公交車編號 34路是偶數,27路是奇數······2. 同桌合作做游戲(交換角色做,可逐漸加大難度來練習)0 如:120,是2、5、3 的倍數;17,三者都不是;75,是3 和5 的倍數,但不是2的倍數······3. 被指名的學生上臺板演,其他學
35、生在書上完成。訂正:42、78、111、165、5988、2037是3 的倍數,其他不是。4. 仔細看圖,迅速找出有用信息。(1)媽媽買了馬蹄蓮和郁金香兩種花。(2)馬蹄蓮和郁金香的價格都是5的倍數。(3)媽媽給出的錢是50元,是5的倍數。(4)找回的錢是13元,不是5的倍數。由此可推斷出:不管媽媽買了多少馬蹄蓮和郁金香,找回的錢都應該是5 的倍數,所以找回的錢數不對。5. 春圖,讀懂題意,分析題意:“至少”是指剛好比22 大,不能大得太多,又必須是3 的倍數。由此得出這道題的實質是:求一個最小的比22大的3 的倍數。在此基礎上得到答案:比 22 大的最小的 3的倍數是24,所以至少耍來2個人
36、才能正好分完。體會教學與日常生活的聯系。通過游戲復習 5 的倍數的特征。訓練學生的審題能力及快速找出有用信息的能力。將生活中的問題轉化成基本數學模型。三、課堂活動。讓學生拿出上面分別寫有 4、3、0、5 的四張卡片,按照教材第 10題的要求完成練習。小組活動,用數字卡片組成教,看看哪些教符合題目的要求。( 1)先看4、3、0、5能組成哪些數,一一列出來。(2)根據題目要求在列出的數中找出對應的數。這道題同時復習了2、5、3的倍數的特征,應讓學生自主完成。四、閱讀資料,拓展認識。讓學生自由閱讀第22頁“生活中的數學”。自由閱讀。作業(yè)設計(可附頁)1. 教材練習三第7、8、9題。2. 思考:奇數與
37、偶數的和是奇數還是偶數?奇數與奇數的和是奇數還是偶數?偶數與偶數的和是奇數還是偶數?板書設計 隨機板書教學反思或案例分析檢查意見檢查人時間學科: 數學 五 年級 備課人: 劉吉香課題質數和合數計劃課時2-5教學內容分析在數論中,有關質數和合數的理論一直吸引著數學家們不斷探索。例如,我們已經知道質數的個數是無限的,但人們仍在不斷地尋找更大的質數,1996年9月初美國的科學家找到了一個新的最大質數(21257787-1)。再比如,1742年,德國數學家哥德巴赫提出了著名的“哥德巴赫猜想”:任何大于2的偶數,都可以寫成兩個質數之和,這一數學王冠上的明珠至今仍吸引著無數人孜孜以求。因此,在質數和合數的
38、世界里充滿了神奇的數學魅力。 在小學階段,只是讓學生在因數、倍數的基礎上初步掌握質數、合數的概念,為后面學習求最大公因數、最小公倍數以及約分、通分打下基礎。在本單元,要求學生能用自己的方法找出100以內的質數,并熟練判斷20以內的數哪個是質數,哪個是合數。教學目標1. 掌握質數和合數的概念,并知道它們之間的聯系和區(qū)別。2. 能夠判斷一個數是質數還是合數。教學重難點質數和合數的概念。教具學具準備教師準備:課件。教學設計思路(含教法設計、學法指導)教學時,可以先復習因數的概念,然后再讓學生找出120各數的所有因數,并引導學生觀察這些數的因數有什么不同,可以怎樣分類。學生通過自主探索,會自覺地把這些
39、數分成三類:只有因數1的;只有1和它本身這兩個因數的;除了1和本身之外還有其他因數的。在分類的基礎上,再引出質數、合數的概念,說明只有1和它本身兩個因數的數叫質數,有兩個以上因數的數叫合數,1既不是質數,也不是合數。學生掌握了質數和合數的概念以后,教師可以出示幾個數,讓學生判斷是質數還是合數,也可以由學生自己分別寫出幾個質數和幾個合數。教學環(huán)節(jié)教學內容與教師活動學生活動設計意圖一、創(chuàng)設情景,引入課題。1. 簡單回顧因數和倍數的知識。2. 讓學生列出 1 - 20 各數的因數,小組比一比,看誰列得快。3. 請同學們觀察自己列出的這些數的因數,看看它們因數的個數有什么特點。4. 讓學生按照匯報情況
40、把這些數進行分類。一個因數兩個因數三個因數5.引出質數和合數的概念:因數只有1和它本身的數叫質數(也叫素數);除1和它本身以外,還有其他因數的數叫合數。(同步板書)1. 隨老師簡單回顧。2. 小組內的同學比一比,列出20 以內各數的因數,看誰列得快。3. 小組合作探究,討論,匯報:( 1)1 的因數只有 1。(2)有的數只有兩個因數,如5、7、11等教。(3)有的數有多個因數,如4、6、8、9等數。4. 動手給20 以內的數按因數的個數進行分類。5. 明確質數和合數的概念,結合剛才的分類進行初步理解。簡單回顧,直接引出質數和合數的概念。二、學習質數和合數。1. 在剛才的分類中,1 好像沒有被分
41、到哪一類。那么 1 是質數還是合數呢?2. 了解了質數和合數的概念,現在同學們來判斷一下,10以內的數中,哪些是質數,哪些是合數?3. 組織學生做“我說你判斷”的游戲:同桌之間互相說出一個數,請對方根據概念判斷其為質數還是合數。4. 我們已經找出了 10 以內的質數,那么,大家能找出 100 以內的質數嗎?5. 對,逐個判斷比較麻煩,是否有什么方法可以很快地找出來?用排除法可以嗎?6. 下面同學們就用排除法來我一找100 以內的質數吧。7. 同學們的方案真是嚴密呀,一個都不漏掉?,F在同學們把書上第 24頁表格中 100 以內的自然數用排除法找出質數吧。1. 思考,識記,明白“規(guī)定”的意思,可簡
42、單理解為“大家都一致確定”或“約定成俗”的意思。2. 獨立思考,根據概念判斷,踴躍匯報:2、3、5、7是質數;4、6、8、9、10是合數。3. 同桌之間互相出數并判斷。4. 小組討論找 100 以內的數的質數的方法。根據找 10 以內的數的質數的方法找,發(fā)現用這種方法找太慢了。5. 思考老師的提示:100 以內的自然數中,除了 1 和合數,其他都是質數,這種方法應該可以。6. 小組討論,合作探究,商討尋找質數的方案:(1)1 既不是質數也不是合數,先劃掉。(2)劃去2 9 的所有倍數。先劃去2的倍數,2本身除外。(3)4是2 的倍數,6是2和3的倍數,8是2 的倍數,9是3 的倍數(本身除外)
43、,所以只要依次劃去3、5、7的倍數,剩下的數都是質數。7. 按照小組討論的方案依次劃掉不是質數的數,完整地找出100 以內自然數中的質數。此處注意強調2是質數,也是唯-的是偶數的質數,加深學生印象。游戲中滲透對質數和合數的理解。讓學生知道 100 L:以內的質數。培養(yǎng)逆向思維,進行方法指導。三、閱讀材料,知識拓展,進行課堂練習。1. 讓學生閱讀教材第24 頁閱讀材料“分解質因數”,了解如何對一個數分解質因數。提示學生:“質因數”,顧名思義,就是指是質數的因數。2.說出幾個合數,讓學生對這幾個數進行分解質因數:36、42、144、228.3.讓學生做練習四弟1、2、3題。(教師巡視,了解學生對知
44、識的掌握情況,個別指導)1. 閱讀教材上的材料,明確質因數的概念,知道如何對一個數進行分解質因數(兩種方法,見教材):把一個合數分解成幾個質數的積。2.動筆計算,分解質因數。3、認真練習,鞏固知識。學習如何對一個數進行分解質因數。了解學情。作業(yè)設計(可附頁)1. 下列各數中哪些是質數7 哪些是合數?分別填人相應的圈中。 29 37 46 58 67 77 83 13 16 35 49 82 87 99 質數, 合數2. 既是質數又是偶數的數是幾?3. 24的因數中,哪些是質數,哪些是合數?4. 已知兩個質數的和是18,積是65,你能說出它們各是什么教嗎?5. 試對88和96分解質因教。板書設計質數和合救 因數只有 1 和它本身的數叫質數(也叫素數)。 除 1 和它本身以外,還有其他因數的數叫合數。 我們規(guī)定:1 不是質數,也不是合數。 10 以內的自然數: 2、3、5、7是質數;4、6、8、9、10是合數。教學反思或案例分析檢查意見檢查人時間學科: 數學 五 年級 備課人: 劉吉香課題整理和復習計劃課時2-6教學內容分析 本節(jié)教材出現了因數、倍數、奇數、偶數、質數、合數等概念,有些概念學生容易混淆,因此,教學時應注意讓學生辨析這些概念。教學目標1、通過復習,進一步明確因數、倍數、奇數、偶數、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體驗店行業(yè)市場營銷總結
- 2025-2030全球無DEHP分隔膜無針輸液接頭行業(yè)調研及趨勢分析報告
- 2025-2030全球基因組注釋服務行業(yè)調研及趨勢分析報告
- 2025-2030全球酚醛彩鋼板行業(yè)調研及趨勢分析報告
- 2025年全球及中國隧道安全監(jiān)測系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球燃氣輪機仿真軟件行業(yè)調研及趨勢分析報告
- 2025年全球及中國自動水力平衡閥行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球辦公室文件柜行業(yè)調研及趨勢分析報告
- 2025年全球及中國4-苯氧基苯酚行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球太空級電機控制器行業(yè)調研及趨勢分析報告
- 護理人文知識培訓課件
- 建筑工程施工安全管理課件
- 2025年春新人教版數學七年級下冊教學課件 7.2.3 平行線的性質(第1課時)
- 安徽省合肥市2025年高三第一次教學質量檢測地理試題(含答案)
- 2025年新合同管理工作計劃
- 統(tǒng)編版八年級下冊語文第三單元名著導讀《經典常談》閱讀指導 學案(含練習題及答案)
- 風光儲儲能項目PCS艙、電池艙吊裝方案
- 產業(yè)鏈競爭關聯度
- TTJSFB 002-2024 綠色融資租賃項目評價指南
- 高考地理一輪復習學案+區(qū)域地理填圖+亞洲
- 全新車位轉讓協議模板下載(2024版)
評論
0/150
提交評論