高中數(shù)學(xué)-數(shù)列求和及數(shù)列通項(xiàng)公式的基本方法和技巧1_第1頁(yè)
高中數(shù)學(xué)-數(shù)列求和及數(shù)列通項(xiàng)公式的基本方法和技巧1_第2頁(yè)
高中數(shù)學(xué)-數(shù)列求和及數(shù)列通項(xiàng)公式的基本方法和技巧1_第3頁(yè)
高中數(shù)學(xué)-數(shù)列求和及數(shù)列通項(xiàng)公式的基本方法和技巧1_第4頁(yè)
高中數(shù)學(xué)-數(shù)列求和及數(shù)列通項(xiàng)公式的基本方法和技巧1_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、大瀝高級(jí)中學(xué)論文 數(shù)列求和的基本方法和技巧關(guān)鍵詞:數(shù)列求和 通項(xiàng)分式法 錯(cuò)位相減法 反序相加法 分組法 分組法 合并法一、利用常用求和公式求和 利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法. 1、 等差數(shù)列求和公式: 2、 等比數(shù)列求和公式:例 求和1x2x4x6x2n+4(x0)解:x0該數(shù)列是首項(xiàng)為1,公比為x2的等比數(shù)列而且有n+3項(xiàng)當(dāng)x21 即x±1時(shí) 和為n+3評(píng)注: (1)利用等比數(shù)列求和公式當(dāng)公比是用字母表示時(shí),應(yīng)對(duì)其是否為1進(jìn)行討論,如本題若為“等比”的形式而并未指明其為等比數(shù)列,還應(yīng)對(duì)x是否為0進(jìn)行討論 (2)要弄清數(shù)列共有多少項(xiàng),末項(xiàng)不一定是第n項(xiàng) 對(duì)應(yīng)

2、高考考題:設(shè)數(shù)列1,(1+2),(1+2+),的前頂和為,則的值。 二、錯(cuò)位相減法求和錯(cuò)位相減法求和在高考中占有相當(dāng)重要的位置,近幾年來(lái)的高考題其中的數(shù)列方面都出了這方面的內(nèi)容。需要我們的學(xué)生認(rèn)真掌握好這種方法。這種方法是在推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,這種方法主要用于求數(shù)列an·bn的前n項(xiàng)和,其中 an 、 bn 分別是等差數(shù)列和等比數(shù)列. 求和時(shí)一般在已知和式的兩邊都乘以組成這個(gè)數(shù)列的等比數(shù)列的公比;然后再將得到的新和式和原和式相減,轉(zhuǎn)化為同倍數(shù)的等比數(shù)列求和,這種方法就是錯(cuò)位相減法。例 求和:()解:由題可知,的通項(xiàng)是等差數(shù)列2n1的通項(xiàng)與等比數(shù)列的通項(xiàng)之積設(shè). (

3、設(shè)制錯(cuò)位)得 (錯(cuò)位相減)再利用等比數(shù)列的求和公式得: 注意、1 要考慮 當(dāng)公比x為值1時(shí)為特殊情況 2 錯(cuò)位相減時(shí)要注意末項(xiàng) 此類題的特點(diǎn)是所求數(shù)列是由一個(gè)等差數(shù)列與一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)相乘。對(duì)應(yīng)高考考題:設(shè)正項(xiàng)等比數(shù)列的首項(xiàng),前n項(xiàng)和為,且。()求的通項(xiàng); ()求的前n項(xiàng)和。三、倒序相加法求和這是推導(dǎo)等差數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,就是將一個(gè)數(shù)列倒過(guò)來(lái)排列(反序),再把它與原數(shù)列相加,就可以得到n個(gè).例 求證:證明: 設(shè). 把式右邊倒轉(zhuǎn)過(guò)來(lái)得 (反序) 又由可得 . +得 (反序相加) 四、分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可分為幾個(gè)等差、等比或

4、常見(jiàn)的數(shù)列,然后分別求和,再將其合并即可.若數(shù)列的通項(xiàng)公式為,其中中一個(gè)是等差數(shù)列,另一個(gè)是等比數(shù)列,求和時(shí)一般用分組結(jié)合法。例:求數(shù)列的前n項(xiàng)和;分析:數(shù)列的通項(xiàng)公式為,而數(shù)列分別是等差數(shù)列、等比數(shù)列,求和時(shí)一般用分組結(jié)合法;解 :因?yàn)椋?(分組)前一個(gè)括號(hào)內(nèi)是一個(gè)等比數(shù)列的和,后一個(gè)括號(hào)內(nèi)是一個(gè)等差數(shù)列的和,因此 五、裂項(xiàng)法求和這是分解與組合思想在數(shù)列求和中的具體應(yīng)用. 裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的. 通項(xiàng)分解(裂項(xiàng))如:(1) (2)(3) (4)(5)例 求數(shù)列的前n項(xiàng)和.解:設(shè) (裂項(xiàng))則 (裂項(xiàng)求和) 小結(jié):此類變

5、形的特點(diǎn)是將原數(shù)列每一項(xiàng)拆為兩項(xiàng)之后,其中中間的大部分項(xiàng)都互相抵消了。只剩下有限的幾項(xiàng)。 注意: 余下的項(xiàng)具有如下的特點(diǎn) 1余下的項(xiàng)前后的位置前后是對(duì)稱的。 2余下的項(xiàng)前后的正負(fù)性是相反的。 練習(xí) 在數(shù)列an中,又,求數(shù)列bn的前n項(xiàng)的和. 六、合并法求和針對(duì)一些特殊的數(shù)列,將某些項(xiàng)合并在一起就具有某種特殊的性質(zhì),因此,在求數(shù)列的和時(shí),可將這些項(xiàng)放在一起先求和,然后再求Sn.例 在各項(xiàng)均為正數(shù)的等比數(shù)列中,若的值.解:設(shè)由等比數(shù)列的性質(zhì) (找特殊性質(zhì)項(xiàng))和對(duì)數(shù)的運(yùn)算性質(zhì) 得 (合并求和) 10數(shù)列的求和方法多種多樣,它在高考中的重要性也顯而易見(jiàn)。我們的學(xué)生在學(xué)習(xí)中必須要掌握好幾種最基本的方法,

6、在解題中才能比較容易解決數(shù)列問(wèn)題。數(shù)列通項(xiàng)公式的十種求法一、公式法例1 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說(shuō)明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、累加法例2 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例3 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則所以評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通

7、項(xiàng)公式。例四已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故因此,則評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式,最后再求數(shù)列的通項(xiàng)公式。三、累乘法例5 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:因?yàn)?,所以,則,故所以數(shù)列的通項(xiàng)公式為評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例6 (2004年全國(guó)I第15題,原題是填空題)已知數(shù)列滿足,求的通項(xiàng)公式。解:因?yàn)樗杂檬绞降脛t故所以由,則,又知,則,代入得。所以,的通項(xiàng)公式為評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,從而可得當(dāng)?shù)谋磉_(dá)式,最后再求出數(shù)列的通項(xiàng)公式。四、待定系數(shù)法例7 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè)將代入式,得,等式兩邊消去,得,兩邊除以,得代入式得由及式得,則,則數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列,則,故。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。例8 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè)將代入式,得整理得。令,則,代入式得由及式,得,則,故數(shù)列是以為首項(xiàng),以3為公比的等比數(shù)列,因此,則。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求數(shù)列的通項(xiàng)公式。例9 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè) 將代入式,得,則等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論