版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精品文檔專題:相似三角形的判定相似三角形的知識與圓有著密切的聯(lián)系,所以我們一定要把這部分知識學(xué)好,為學(xué)習(xí)圓這部分知識打下良好基礎(chǔ)。我們本講重點(diǎn)研究兩個問題:一、比例式,等積式的證明;二、雙垂直條件下的證明與計算。一、等積式、比例式的證明:等積式、比例式的證明是相似形一章中常見題型。因?yàn)檫@種問題變化很多,同學(xué)們常常感到困難。但 是,如果我們掌握了解決這類問題的基本規(guī)律,就能找到解題的思路。(一)遇到等積式(或比例式)時,先看是否能找到相似三角形。等積式可根據(jù)比例的基本性質(zhì)改寫成比例式,在比例式各邊的四個字母中如有三個不重復(fù)的字母,就 可找出相似三角形。例1、已知:如圖, ABC中,/ ACB=9
2、0, AB的垂直平分線交 AB于D,4交BC延長線于F。求證:CD2=DE- DRjj/ICD DE分析:我們將此等積式變形改寫成比例式得:而一五,由等式左邊得到 CDF由等式右邊得到 EDC這樣只要證明這兩個三角形相似就可以得到要證的等積式了。因?yàn)? CDE是公共角,只需證明/ DCE=/ F就可證明兩個三角形相似。證明略(請同學(xué)彳門證明)提示 :D為直角三角形斜邊 AB的中點(diǎn),所以AD=DC,則/ DCE=/ A.(二)若由求證的等積式或比例式中找不到三角形或找到的三角形不相似,則需要進(jìn)行等線段代換或 等比代換。有時還需添加適當(dāng)?shù)妮o助線,構(gòu)造平行線或相似三角形。例2.如圖,已知 ABC中,
3、AB=AC AD是BC邊上的中線, CF/ BA BF交AD于P點(diǎn),交 AC于E點(diǎn)。 求證:B#=PE- PF。分析:因?yàn)锽R PE PF三條線段共線,找不到兩個三角形,所以必須考慮等線段代換等其他方法,因 為AB=AC D是BC中點(diǎn),由等腰三角形的性質(zhì)知AD是BC的垂直平分線,如果我們連結(jié) PC,由線段垂直平分線的性質(zhì)知PB=PC只需證明 PESPCF,問題就能解決了。證明:A精品文檔分 析:比例式左邊 AB, AC在 ABC中,例3.如圖,已知:在 ABC中,/ BAC=90, ADL BC, E是AC的中點(diǎn),ED交AB的延長線于 F。盤 口F求證:或C AF 。右邊DF、AF在4ADF中
4、,這兩個三角形不相似,因此本題需經(jīng)過中間比進(jìn)行代換。通過證明兩套三角形分別相似證得結(jié)論。證明:. / BAC=90 , AD± BC, / ADBh ADCW BAC=90,AS _ 3Dac=7d. / 1+/2=90°, / 2+/C=9Cf, ./ 1=/ C,. .ABNACAtD又 E是AC中點(diǎn),DE=EC ./ 3=/C,又/ 3=/4, / 1 = /C,1=/4,又有/ F=/F, . FBD FDA8D _ DF延 口F.苑心,公6(等比代換)二、雙垂直條件下的計算與證明問題:“雙垂直”指:“ RtABC中,/ BCA=90, CDL AB于D',
5、(如圖)在這樣的條件下有下列結(jié)論:(1) AD6 CD+ ACB根據(jù)下列各條件分別求出未知所有線段的長:(2)由 ADSCDB導(dǎo) cD=AD- BD由 AD6 ACB得 AC=AD- AB由 CD小 ACB得 BC=BD- AB由面積得 AC- BC=AB CD勾股定理應(yīng)熟記這些結(jié)論,并能靈活運(yùn)用。4.如圖,已知 RtABC中,/ ACB=90, CDLAB于 D,(1) AC=3 BC=4;(2) AC= 2 , AD=2;143(3) AD=5 DB= § ;(4) BD=4 AB=20分析:運(yùn)用雙垂直條件下的乘積式及勾股定理,已知兩條線段的長就可求出其他四條線段的長。解:RtA
6、BC中,/ ACB=90 , CDL AB于 D,(1)AC=3 BC=4 由勾股定理得 AB= 4Ad+Ed=5,AC3 2 AC2=AD- AB,AD= AH = 5 ,916BD=AB-AD=5-:'= -, CD- AB=AC- BCAC SC 12c CD= 慰 5 (或禾1J用C6=AD-BD來求)5 AC= - , AD=2, AC2=AD - AB239 BD=AB-AD BD= 8 -2=星, BC2=BD- AB,且 BC>0BC=14£(3) AD=5 DB= 5 ,且 cD=AD- BD,-JAD-ED =CD=1=12電AB=AD+BD=- A
7、C2=AD- AB,(4) BD=4 AB=29, BC2=BD- AB,. BC= 18dAs = =229 =2 岳,AD=AB-BD=29-4=25 AC2=AD- AB,AC= /加妞=q5 49 =5, cD=AD- bd,CD=1' '-"4 =10£3例5.已知:如圖,矩形ABC邛,AB:BC=5:6,點(diǎn)E在BC上,點(diǎn)F在CD上,EC= B BC FC=亍CDFGL AE于 G求證:AG=4GE分析:圖中有直角三£(k>0),則 EC= B BC=k,角形,充分利用直角三角形的知識,設(shè)AB=5k, BC=6k33FC= : CD
8、= - AB=3k,彳導(dǎo)DF=2k,由勾股定理可得A=A+BE2=50k2, EF2=EC2+FC2=10k2, AF2=AD2+DF'=40k2,所以 AauEJ+AF2 由勾股定理逆定理得 RtAFE,又因?yàn)镕G!AE,具備雙垂直條件,問題的解決就有了眉目。證明:. AB: BC=5 6, 設(shè) AB=5k, BC=6k (k>0), 在矩形abcdK有CD=AB=5k, BC=AD=6k, / B=Z C=Z D=9C0,LL EC= B BC, EC=d X 6k=k,. BE=5k,33 FC= C CD, FC= 5 X 5k=3k, DF=CD-FC=2k在RtADF
9、中,由勾股定理得AF2=AE2+D=36k2+4k2=40k2,同理可得 AE"=50k2, EF 2=10k2,AF2+EF =40k2+10k2=50k2=AE", .AEF是RtA (勾股定理逆定理),F(xiàn)G± AE, AFE FGEEF2=GE- AE, AE= , ' J =5 k小 _ I Oita. GE= ,揚(yáng)=忑 k, - 4GE=4 點(diǎn) k .AG=AE-GE=5'-:k- ' k=4 ' k,AG=4GE.例 6.已知:如圖, RtABC中,/ACB=90, CD!AB于 D, DE! AC于 E, DF
10、7;BC于 F。 求證:AE- BF AB=C以證 明:RtABC中,/ACB=90 , CD! AB,.CL2=AD- BD,CD4=AC2 - BD2,又RtADC中,DU AC, RtBDC中,DFL BC,.AD2=AE- AC, BD2=BF- BC, 4 CD=AE- BF- AC- BC,又 AC- BC=AB CD4 CD=AE- BF - AB- CDAE- BF - AB=CD說明:本題幾次用到直角三角形中的重要等積式。請同學(xué)們熟記這些重要的等積式,并能運(yùn)用它們解 決問題。測試選擇題1 .如圖所示,在矩形 ABCM, AE1 BD于 E, S矩形=40cnf, Saabe:
11、 Sadb= 1 : 5,貝U AE的長為()A. 4 cm B. 5 cm C. 6 cm D. 7 cm2 .如 圖,在 DABCDJ43, E是 BC上的一點(diǎn),AE 交BD于點(diǎn)F,已知 BE:EC= 3: 1,Safbe=18,則Safda的大小為()。A. 24 B. 30C. 32 D. 123 .如圖,在正方形ABCM,點(diǎn)E在AB邊上,且 AE:EB=2: 1,AHDE于G,交BC于F,則 AEG的面積與四邊形 BEGF勺面積比為()A.1 : 2B. 1 : 4C.4 : 9D. 2 : 34 .如圖, ABC的底 邊BC= a,高AD= h, 矩形EFGH接于 ABC 其中E、
12、F分別在邊 AG AB上, G H都在BC上,且EF= 2FG則矢I形EFGH勺周長是()。ahA. B. - .''A絲二5 .如 圖,在 ABC43, / B= / AD巳/ CAD 萌 2 ,設(shè) EBD AAD(C 4ABC的周長依次為 m、件m。那么 儂 的值是()。35A. 2 B. 4 C. - D. 4答案與解析答案:1、A 2、C 3、C 4、B 5、D解析:1 .解 / BAD= 90° , AEXBD ABEE DBAS AABE: S/DBA= AB : DBoS/xABE: S DBA= 1 : 5, AB2 : DB= 1 : 5,AB :
13、DB=1 :不。設(shè) AB=k, DB=超 k,精品文檔2S 矩形=40cm , . k , 2k = 40ok =2 /。BD= 后 k= 10, AD= 4 忑。1_JSa abd= B BD- AE= 20, Q 10AE= 20AE= 4 (cm)。故選 Ao2 . Co3 .分析 易證 AB圖 DAEi故知BF= AE因 AE: EB= 2: 1,故可設(shè) AE= 2x, EB= x,貝U AB= 3x, BF= 2x。由勾股定理得AF=1工"+仍* = 后。易證 AG曰 ABF。可得 S/ AGE : SaaBFz= aF : AF2= ( 2x) 2 :(叵)2= 4 :
14、13。可得 Sa AGE: S 四邊形 BEGF= 4 : 9。 故選Co4 .分析:由題目條件中的EF= 2FG得,要想求出矩形的周長,必須求出FG與高AD= h的關(guān)系。由EF/BC得4人5& ABC;貝U EF與高h(yuǎn)即可聯(lián)系上。解:設(shè)FG= x,則 EF=2FGEF=2x。 EF / BC,AAFEs ABG又 ADL BC,設(shè) AD交 EF于 M 貝U AM± EF。A/if _ EFAD=BCAD-DM _2xTad = Tah解之,得x =加十R矩形EFGH的周長為6x= 十值。評注:此題還可以進(jìn)一步求出矩形的面積。若對題目再加一個條件: AEAC,那么還可證出 f
15、G"=BG-CH通過這些聯(lián)想,就會對題目的內(nèi)在的聯(lián)系有更深的理解,也會提高自己的數(shù)學(xué)解題能力。5.解析:由/ CAD= / ADE 得 AC/ DE, .AB6 EBQ 又/ B= / CAD / C= Z C, . ABS DAC.ABS EBtDADAC即 EBDDAS ABG再利用相似三角形的周長比等于相似比即可得出。中考解析例1.(重慶市)如圖,在 ABC中,/ BAC= 90° , D是BC中點(diǎn),AE±AD交CB延長線于點(diǎn) E,則結(jié) 論正確的是()(A) AEtD ACB (B) AEB ACD ( C) BA& ACE ( D) AES DAC
16、考點(diǎn):相似三角形的判定評析:思路:根據(jù)相似三角形的判定方法,用排除法結(jié)合條件易選出正確選項(xiàng)。答案為C.例2.(河北省)已知:如圖,在 ABC中,D是BC邊上的中點(diǎn),且 AD=AC DEI BC, DE與AB相交于 點(diǎn)E, EC與AD相交于點(diǎn)Fo(1)求證: ABS FCD(2)若 Safccf5, BC= 10,求 DE的長。考點(diǎn):相似三角形的性質(zhì)、等腰三角形的性質(zhì)評析:思路:第 1 問因 AD=AC / ACB至 CDF 又 D是 BC中點(diǎn),ED± BCB=Z ECD AB(CA FCD第2問利用相似三角形的性質(zhì),作 AML BC于M,易知Saabc=4Safcd, /. Saab
17、c=20, AM=4又v AM/ EDED RD制 ,再根據(jù)等腰三角形的性質(zhì),及中點(diǎn),可以求出DE證明:(1) .DEL BC, D 是 BC 中點(diǎn),EB=ECB=Z 1.又 AD=AC2=/ ACB . ABS FCD.(2)方法一:過點(diǎn) A作AML BC,垂足為點(diǎn) M.血 產(chǎn),=4 ABS FCtD BC=2CD . *血刖 四 ,又 Safc=5,Saab(=20. .SABC= 2BC- AM BC=1Q20= 5X10XAM AM=4.DF ED又 DE/ AM一 上一%.1 上1 DM=工 DC= 3 , BM=BD+MBD= B BC=5,AD£ _ S那,DE= I說
18、明:本題也可運(yùn)用 ABB FOLD由相似比為2,證出F是AD的中點(diǎn),通過“兩三角 形等底、等高,則面積相等",求出Saabc=20.方 法二:作FH, BC垂足為點(diǎn)H.£ £. Sa fcd= D DC FH,又 Safcdf5, DC= B BC=55= H X 5X FH,FH=2.過點(diǎn)A作AML BO 垂足為點(diǎn) M, ABS FCDFH _ DC _ 1訓(xùn) EC 5,. AM=4.又. FH/ AM DK _ m _ 3 _ 1 白前 AM a 5, .點(diǎn)H是DM的中點(diǎn).又. FH/ DE,-.15LS _2_=T? HC=HM+MC= , DE 、, . DE= 3 .例3.(河南省)如圖,點(diǎn) C、D在線段AB上, PCD等邊三角形。(1)當(dāng)AG CD DB滿足怎樣的關(guān)系時, ACS PD"(2)當(dāng) AC。4PDB時,求/ APB的度數(shù)??键c(diǎn):相似三角形的判定及性質(zhì)。評析:本題是一個探索型
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《巨匠童心》課件
- 《童年回憶的》課件
- 《客戶梳理技巧》課件
- 2024年黑龍江農(nóng)業(yè)工程職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 四川省南充市2025屆高三上學(xué)期高考適應(yīng)性考試(一診)英語試卷含答案
- 單位管理制度匯編大全職員管理
- 單位管理制度合并選集人力資源管理
- 單位管理制度分享合集【人力資源管理篇】
- 單位管理制度分享大合集【人力資源管理篇】
- 單位管理制度范例匯編職員管理篇十篇
- 2024年01月11190當(dāng)代中國政治制度期末試題答案
- 2025年河北省職業(yè)院校技能大賽工業(yè)互聯(lián)網(wǎng)集成應(yīng)用參考試題庫(含答案)
- 2021-2022學(xué)年四川省南充市九年級(上)期末數(shù)學(xué)試卷
- 2024政府采購評審專家考試題庫附含答案
- 《商務(wù)跟單工作流程》課件
- 中小學(xué)膳食經(jīng)費(fèi)管理的目標(biāo)與原則
- 2024高血壓的診斷與治療
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期期末考試物理試題(含答案)3
- 重度子癇前期產(chǎn)后護(hù)理查房
- 制作課件wps教學(xué)課件
- 北京市海淀區(qū)2023屆高三上學(xué)期期末考試化學(xué)試卷 附解析
評論
0/150
提交評論