![一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)研_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/26/4bacc7d3-5376-40f0-a773-454dae675a91/4bacc7d3-5376-40f0-a773-454dae675a911.gif)
![一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)研_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/26/4bacc7d3-5376-40f0-a773-454dae675a91/4bacc7d3-5376-40f0-a773-454dae675a912.gif)
![一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)研_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/26/4bacc7d3-5376-40f0-a773-454dae675a91/4bacc7d3-5376-40f0-a773-454dae675a913.gif)
![一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)研_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/26/4bacc7d3-5376-40f0-a773-454dae675a91/4bacc7d3-5376-40f0-a773-454dae675a914.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、 一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)研摘要:實(shí)現(xiàn)了一種全集成可變帶寬中頻寬帶低通濾波器,討論分析了跨導(dǎo)放大器-電容(OTAC)連續(xù)時(shí)間型濾波器的結(jié)構(gòu)、設(shè)計(jì)和具體實(shí)現(xiàn),使用外部可編程電路對所設(shè)計(jì)濾波器帶寬進(jìn)行控制,并利用ADS軟件進(jìn)行電路設(shè)計(jì)和仿真驗(yàn)證。仿真結(jié)果表明,該濾波器帶寬的可調(diào)范圍為126 MHz,阻帶抑制率大于35 dB,帶內(nèi)波紋小于05 dB,采用18 V電源,TSMC 018m CMOS工藝庫仿真,功耗小于21 mW,頻響曲線接近理想狀態(tài)。關(guān)鍵詞:Butte入侵檢測系統(tǒng)IDS(intrusion detection system
2、)是用戶計(jì)算機(jī)主動安全防護(hù)的一種措施,它用于檢測未經(jīng)用戶授權(quán)直接進(jìn)行計(jì)算機(jī)信息訪問的行為,它從系統(tǒng)內(nèi)部和各種網(wǎng)絡(luò)資源中主動采集信息,從中分析可能的異常入侵。根據(jù)入侵檢測方法,IDS分為異常檢測系統(tǒng)和誤用檢測系統(tǒng)兩大類。誤用檢測系統(tǒng)只能檢測出已知特征模式的攻擊,對未知特征模式的攻擊無法檢測。而異常檢測系統(tǒng)采用將系統(tǒng)當(dāng)前的活動與過去行為模型進(jìn)行比較的方法,能夠有效地對新的、未知的攻擊進(jìn)行檢測1-3。參考文獻(xiàn)4 提出了基于強(qiáng)規(guī)則和弱規(guī)則的關(guān)聯(lián)規(guī)則挖掘方法來檢測異常操作較少和分布時(shí)間長等不易的網(wǎng)絡(luò)攻擊。同時(shí)建立以各屬性為節(jié)點(diǎn)的貝葉斯網(wǎng)絡(luò)作為異常判別器,進(jìn)一步判別關(guān)聯(lián)規(guī)則挖掘中發(fā)現(xiàn)的可疑行為,提高了系統(tǒng)
3、檢測的準(zhǔn)確率。但是在數(shù)據(jù)訓(xùn)練階段,根據(jù)數(shù)據(jù)挖掘的要求,需要對原始的無攻擊的純凈數(shù)據(jù)信息進(jìn)行數(shù)據(jù)預(yù)處理,訓(xùn)練成適合數(shù)據(jù)挖掘的數(shù)據(jù)記錄,而數(shù)據(jù)信息抓取過程中受到網(wǎng)絡(luò)實(shí)時(shí)更新等因素的影響無法避免數(shù)據(jù)噪音,進(jìn)而影響數(shù)據(jù)信息本身的安全性,依此數(shù)據(jù)信息訓(xùn)練的數(shù)據(jù)項(xiàng)集本身也就存在了安全隱患。參考文獻(xiàn)5采用變長序列模式匹配算法對程序歷史行為和當(dāng)前行為進(jìn)行比較,聯(lián)合使用多個(gè)窗長度和判決門限對程序行為進(jìn)行判決,提高了檢測的準(zhǔn)確率和靈活性。但由于網(wǎng)絡(luò)數(shù)據(jù)信息量不斷膨脹,多窗口長度和判決門限會增加計(jì)算機(jī)的運(yùn)算量,造成數(shù)據(jù)擁塞,網(wǎng)絡(luò)負(fù)載加大。參考文獻(xiàn)6提出了一種基于時(shí)態(tài)知識模型和可變滑動窗口的實(shí)時(shí)模式提取算法,并在此基
4、礎(chǔ)上,實(shí)現(xiàn)了基于規(guī)則的、層次化的智能入侵檢測原型系統(tǒng)。但在匹配算法中需要逐一遍歷,對于復(fù)雜數(shù)據(jù)信息實(shí)時(shí)性難以體現(xiàn)。參考文獻(xiàn)7提出了一種具有自主學(xué)習(xí)、自主完善功能的入侵監(jiān)測模型,可發(fā)現(xiàn)已知和未知的異常入侵活動。但該模型中評估指標(biāo)不具備完善性,對短時(shí)間內(nèi)正常進(jìn)程記錄監(jiān)管有限,從而更新的規(guī)則庫存在安全隱患?;谝陨蠁栴},本文提出了一種新的基于數(shù)據(jù)挖掘技術(shù)的異常入侵檢測系統(tǒng)ANEIDSDM(A New Exception Intrusion Detection System based on Data Mining)。1 ANEIDSDM模型概述 在ANEIDSDM
5、模型中,數(shù)據(jù)信息E是否異常,由數(shù)據(jù)評估W決定。只有當(dāng)數(shù)據(jù)評估通過數(shù)據(jù)信息異常檢測,滿足相似度、支持度和置信區(qū)閾值時(shí),數(shù)據(jù)信息E才被認(rèn)為是正常的數(shù)據(jù)信息,否則為異常。數(shù)據(jù)信息是分散地存儲于計(jì)算機(jī)和傳播于網(wǎng)絡(luò)中的,對于數(shù)據(jù)的采集是基于一定條件的,有基于主機(jī)的信息采集,也有基于網(wǎng)絡(luò)的信息采集和混合型的數(shù)據(jù)信息采集等8。當(dāng)數(shù)據(jù)信息采集完成后,會經(jīng)過數(shù)據(jù)預(yù)處理,形成數(shù)據(jù)項(xiàng)集S,對S分類產(chǎn)生高頻繁集和低頻繁集。對于高頻繁數(shù)據(jù)項(xiàng)集進(jìn)行模式分析,形成數(shù)據(jù)模式集O。每一種模式集都對應(yīng)一種數(shù)據(jù)規(guī)則,對數(shù)據(jù)模式集的數(shù)據(jù)分析處理過程就是數(shù)據(jù)挖掘規(guī)則過程,數(shù)據(jù)規(guī)則集Q形成后,為了便于檢測,對其進(jìn)行分類分析二次數(shù)據(jù)挖掘,
6、形成分類規(guī)則集,最終形成規(guī)則庫K。經(jīng)過多次訓(xùn)練后,數(shù)據(jù)采集的規(guī)則庫具有一定的記憶,當(dāng)數(shù)據(jù)進(jìn)行抓取時(shí)結(jié)合記憶庫和規(guī)則庫的雙重考核,數(shù)據(jù)信息更加安全可信。數(shù)據(jù)挖掘過程中對數(shù)據(jù)項(xiàng)集分析產(chǎn)生的數(shù)據(jù)模式可能有用,也可能是無關(guān)的。所以為了節(jié)約計(jì)算機(jī)存儲空間和數(shù)據(jù)挖掘速度,采取以某一主屬性為特征屬性的方式對數(shù)據(jù)信息E進(jìn)行挖掘。當(dāng)待測數(shù)據(jù)信息E進(jìn)行攻擊時(shí),啟動檢測系統(tǒng),快速對其數(shù)據(jù)信息進(jìn)行分析,形成數(shù)據(jù)規(guī)則集V,對規(guī)則集V實(shí)行分類匹配,對比相似度,搜索與之相對應(yīng)或相類似的規(guī)則庫對其規(guī)則集進(jìn)行檢驗(yàn)。若異常,則實(shí)行預(yù)警,否則以正常信息對待。當(dāng)數(shù)據(jù)信息龐雜時(shí),根據(jù)分類規(guī)則庫,可快捷對數(shù)據(jù)規(guī)則集實(shí)行查找匹配,快速對數(shù)
7、據(jù)信息進(jìn)行檢測。數(shù)據(jù)檢測時(shí)結(jié)合在線滑動窗口T,不僅對原始獲取數(shù)據(jù)信息進(jìn)行實(shí)時(shí)檢測,而且對當(dāng)前由用戶操作所引起的原始數(shù)據(jù)部分信息丟失、更改等現(xiàn)象具有一定的處理應(yīng)變能力。當(dāng)數(shù)據(jù)評估W完成后,評估結(jié)果存入決策列表L中,以供用戶決策。其思想有以下特點(diǎn):(1)數(shù)據(jù)信息的采集結(jié)合主屬性產(chǎn)生高頻和低頻數(shù)據(jù)項(xiàng)集,減少了無關(guān)信息的處理過程。(2)采取關(guān)聯(lián)分析和分類分析二次挖掘,數(shù)據(jù)處理速度和數(shù)據(jù)挖掘質(zhì)量有明顯的提高。(3)在線檢測數(shù)據(jù)記錄匹配,實(shí)時(shí)性更高。(4)引入相似度匹配檢測思想,實(shí)現(xiàn)快速數(shù)據(jù)評估。2 相關(guān)知識與定義2.1數(shù)據(jù)挖掘數(shù)據(jù)挖掘(Data Mining)是指從大量數(shù)據(jù)信息中發(fā)現(xiàn)數(shù)據(jù)間的潛在規(guī)律,進(jìn)
8、而提取人們感興趣的和有用的知識的方法和技術(shù),這些知識具有隱含性、未知性、異常性,但又是潛在的對系統(tǒng)安全檢測有用的信息9。數(shù)據(jù)挖掘過程一般由三個(gè)階段組成:數(shù)據(jù)準(zhǔn)備階段(包括數(shù)據(jù)清理與集成、數(shù)據(jù)選擇與變換)、數(shù)據(jù)挖掘階段、評估與表示階段(結(jié)果表達(dá)與解釋)。數(shù)據(jù)挖掘的模式有關(guān)聯(lián)模式、分類模式、回歸模式、時(shí)間序列模式、聚類模式和序列模式六種10。與數(shù)據(jù)挖掘的模式相對應(yīng)的數(shù)據(jù)挖掘算法有:關(guān)聯(lián)分析算法、數(shù)據(jù)分類算法、序列分析算法和聚類分析算法等。目前,應(yīng)用于入侵檢測領(lǐng)域的數(shù)據(jù)挖掘算法主要是關(guān)聯(lián)分析算法、數(shù)據(jù)分類算法和序列分析算法。 (1)數(shù)據(jù)預(yù)處理數(shù)據(jù)預(yù)處理模塊處理原始
9、數(shù)據(jù)包,抽取對應(yīng)的主特征屬性組成數(shù)據(jù)信息集,提供給數(shù)據(jù)挖掘模塊。由于數(shù)據(jù)連接過程需要傳送許多數(shù)據(jù)包,而這些數(shù)據(jù)包的基本屬性很多是重復(fù)的,所以對于TCP連接,從連接建立到連接終止過程中所有數(shù)據(jù)包的傳送抽象為一個(gè)連接事件,而對每一個(gè)連接事件建立一個(gè)與之相對應(yīng)的數(shù)據(jù)項(xiàng)集。對無連接的UDP,可簡單地將每一個(gè)數(shù)據(jù)包抽象成一個(gè)連接事件。 (2)關(guān)聯(lián)規(guī)則挖掘關(guān)聯(lián)規(guī)則是指對數(shù)據(jù)項(xiàng)集中各種數(shù)據(jù)模式的有代表性的數(shù)據(jù)之間知識規(guī)律的規(guī)則描述。在入侵檢測系統(tǒng)中,設(shè)定一個(gè)最小支持度和一個(gè)最小置信度來度量關(guān)聯(lián)規(guī)則的相關(guān)性,從已知的數(shù)據(jù)信息中產(chǎn)生關(guān)聯(lián)規(guī)則,保證其支持度和置信度大于用戶預(yù)先設(shè)定的最小支持
10、度和最小置信度閾值。其過程為:特征抽取與數(shù)據(jù)預(yù)處理。數(shù)據(jù)信息被采集后形成數(shù)據(jù)項(xiàng)集,每一個(gè)數(shù)據(jù)項(xiàng)集以一個(gè)主屬性為參考,對無關(guān)數(shù)據(jù)項(xiàng)集進(jìn)行處理。關(guān)聯(lián)規(guī)則挖掘分析。對數(shù)據(jù)模式中關(guān)聯(lián)規(guī)則的數(shù)據(jù)進(jìn)行規(guī)則挖掘。檢測入侵。將新產(chǎn)生的關(guān)聯(lián)規(guī)則添加到關(guān)聯(lián)規(guī)則庫中去,然后將用戶行為與關(guān)聯(lián)規(guī)則庫中的規(guī)則匹配來判斷是否入侵。常見的算法有Apriori算法和AprioriTid算法。(3)頻度分析頻度分析是指在一定時(shí)間窗口事件發(fā)生的頻度,它有高頻和低頻繁兩種11。高頻挖掘:即數(shù)據(jù)項(xiàng)集的屬性集大于一定支持度和置信度,如DDOS攻擊,在高頻繁挖掘時(shí)就能檢測出這類攻擊。低頻繁挖掘:即數(shù)據(jù)項(xiàng)集的屬性集支持度低于一定閾值而置信度
11、大于一定閾值,如慢掃描過程在單位時(shí)間內(nèi)異常掃描較少,假如只檢查高頻數(shù)據(jù)項(xiàng)集,就會漏掉這類模式的攻擊。(4)數(shù)據(jù)分類分析數(shù)據(jù)分類的目的是提取數(shù)據(jù)庫中數(shù)據(jù)項(xiàng)的特征屬性,生成分類模型,把數(shù)據(jù)庫中的數(shù)據(jù)項(xiàng)映射到預(yù)先定義的類別中的一個(gè),異常入侵檢測時(shí)它可以用數(shù)據(jù)規(guī)則集的形式表示12。數(shù)據(jù)分類的步驟如下:訓(xùn)練數(shù)據(jù)項(xiàng)集,將待測數(shù)據(jù)信息訓(xùn)練成數(shù)據(jù)規(guī)則集。分析數(shù)據(jù)規(guī)則集,提取主特征屬性。根據(jù)標(biāo)準(zhǔn)數(shù)據(jù)規(guī)則庫中數(shù)據(jù)規(guī)則集對待測數(shù)據(jù)規(guī)則集進(jìn)行分類。常用的分類算法有RIPPER、m3、C4.5、Near-neighbor和神經(jīng)網(wǎng)絡(luò)等。2.2 基礎(chǔ)定義定義1 滑動窗口。在t時(shí)間內(nèi),數(shù)據(jù)匹配檢測的范圍。
12、0; 設(shè)開始時(shí)間為t=nt0,則滑動窗口T的檢測范圍為t=T+nt0。其中,t0為步長,T為窗口大小,t為時(shí)間。一般T是固定值13,為用戶默認(rèn),專家可根據(jù)系統(tǒng)安全等級設(shè)置其值大小。定義2 相似度。數(shù)據(jù)挖掘規(guī)則庫與系統(tǒng)檢測匹配規(guī)則庫的相似性度量值。 定義3 數(shù)據(jù)評估。對數(shù)據(jù)規(guī)則是否符合系統(tǒng)安全的衡量。 設(shè)數(shù)據(jù)評估為W,則W=正常,異常,其評估過程為在滑動窗口T內(nèi)對規(guī)則庫Ki的相似匹配和檢測匹配。2.3 ANEIDSDM定義 本模型由一個(gè)10元組E,S,O
13、,Q,P,K,W,T,M,L來表示。其中E表示數(shù)據(jù)信息,包含基于網(wǎng)絡(luò)流量,基于主機(jī)和混合型的數(shù)據(jù)信息。當(dāng)獲取數(shù)據(jù)信息E后,對其形成主屬性為采集標(biāo)準(zhǔn)的數(shù)據(jù)項(xiàng)集S,如在時(shí)間、方向、端口號、主機(jī)IP地址等屬性中,以目的主機(jī)IP地址為主屬性,采集的所有數(shù)據(jù)記錄經(jīng)過數(shù)據(jù)去噪、預(yù)處理后形成數(shù)據(jù)項(xiàng)集。數(shù)據(jù)項(xiàng)集S經(jīng)過數(shù)據(jù)模式分析后形成數(shù)據(jù)模式集,用O來表示。每種數(shù)據(jù)模式都對應(yīng)一種數(shù)據(jù)規(guī)則算法,經(jīng)過數(shù)據(jù)挖掘,形成數(shù)據(jù)規(guī)則集,用Q來表示。對數(shù)據(jù)挖掘的規(guī)則集進(jìn)行分類分析,形成數(shù)據(jù)分類集,用P來表示。數(shù)據(jù)挖掘的結(jié)果最終形成規(guī)則庫K。數(shù)據(jù)挖掘完成后需要對數(shù)據(jù)挖掘結(jié)果進(jìn)行數(shù)據(jù)評估,用W來表示。在數(shù)據(jù)評估過程中引入滑動窗口T和相似度M,數(shù)據(jù)評估結(jié)束后結(jié)果添加在決策列表L,提供給用戶。用戶響應(yīng)后,規(guī)則庫K自動更新。熱門詞條BOURNS3386F-1-502T15-02印刷線路板焊接式電源變壓器RG174 7芯 64BC編 實(shí)芯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度員工未簽合同勞動仲裁應(yīng)對與勞動爭議預(yù)防合同
- 2025年度精裝公寓電子版裝修合同
- 2025年度紅薯種植、加工與品牌銷售一體化合同
- 2025年度快遞配送及售后服務(wù)合同模板
- 二零二五年度油漆施工環(huán)保評估合同
- 智能辦公環(huán)境的建設(shè)與經(jīng)濟(jì)效益研究報(bào)告
- 淺析小學(xué)習(xí)作中的材料準(zhǔn)備與構(gòu)思能力培養(yǎng)
- 二零二五年度父母子女教育基金存款保管合同
- 二零二五年度貨車司機(jī)勞動合同(附車輛清潔及維護(hù)責(zé)任)
- 教育機(jī)構(gòu)內(nèi)健身房會員消費(fèi)行為分析
- 新能源發(fā)電項(xiàng)目合作開發(fā)協(xié)議
- 2025年上半年潞安化工集團(tuán)限公司高校畢業(yè)生招聘易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年鐵嶺衛(wèi)生職業(yè)學(xué)院高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 2025年山東魯商集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 大型活動中的風(fēng)險(xiǎn)管理與安全保障
- 課題申報(bào)書:個(gè)體衰老差異視角下社區(qū)交往空間特征識別與優(yōu)化
- GB/T 16316-1996電氣安裝用導(dǎo)管配件的技術(shù)要求第1部分:通用要求
- GA/T 455-2021居民身份證印刷要求
- 邀請函模板完整
- 建設(shè)工程施工合同糾紛涉及的法律適用問題課件
- 2023年江蘇省南京市中考化學(xué)試卷2
評論
0/150
提交評論