高中數(shù)學(xué)知識點和常用公式_第1頁
高中數(shù)學(xué)知識點和常用公式_第2頁
高中數(shù)學(xué)知識點和常用公式_第3頁
高中數(shù)學(xué)知識點和常用公式_第4頁
高中數(shù)學(xué)知識點和常用公式_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、1.正弦余弦常用公式sin(-a)=-sin(a) cos(-a)=cos(a) sin(2-a)=cos(a) cos(2-a)=sin(a) sin(2+a)=cos(a) cos(2+a)=-sin(a) sin(-a)=sin(a) cos(-a)=-cos(a) sin(+a)=-sin(a) cos(+a)=-cos(a) 2.兩角和與差的三角函數(shù) sin(a+b)=sin(a)cos(b)+cos()sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a

2、)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化積公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(

3、a)-1=1-2sin2(a) 5.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 6.萬能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 7.其它公式(推導(dǎo)出來的 ) asin(a)+bcos(a)=a2+b2sin(a+c) 其中 tan(c)=ba asin(a)+bcos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a

4、2)+cos(a2)2 1-sin(a)=(sin(a2)-cos(a2)2 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4ac=0 注:方程有兩個相等的實根 b2-4ac>0 注:方程有兩個不等的實

5、根 b2-4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根 三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2t

6、anA/1-(tanA)2 cos2a=(cosa)2-(sina)2=2(cosa)2 -1=1-2(sina)2 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) cot(A/2)=(1+cosA)/(1-cosA) cot(A/2)=-(1+cosA)/(1-cosA) 和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsi

7、nB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 某些數(shù)列前n項和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 5 12+22+32+42+52+62+72+82+n2=

8、n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角 圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo) 圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側(cè)面積 S=

9、c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h' 圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長 柱體體積公式 V=s*h 圓柱體

10、 V=pi*r2h 常用導(dǎo)出公式1.y=c(c為常數(shù)) y'=0 2.y=xn y'=nx(n-1) 3.y=ax y'=axlna y=ex y'=ex 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos2x 8.y=cotx y'=-1/sin2x 9.y=arcsinx y'=1/1-x2 10.y=arccosx y'=-1/1-x2 11.y=arctanx y'

11、;=1/1+x2 12.y=arccotx y'=-1/1+x2復(fù)數(shù) 代數(shù)形式 三角形式 a+bic+di ac,bd (a+bi)+(c+di)(a+c)+(b+d)i (a+bi)(c+di)(ac)+(bd)i (a+bi)(c+di )(acbd)+(bc+ad)i a+bir(cos+isin) r1(cos1+isin1)r2(cos2+isin2) r1r2cos(1+2)+isin(1+2) r(cos+sin)nrn(cosn+isinn) 四、 不等式 1、若n為正奇數(shù),由 可推出 嗎? ( 能 )若n為正偶數(shù)呢? ( 均為非負(fù)數(shù)時才能)2、同向不等式能相減,相除嗎

12、 (不能)能相加嗎? ( 能 )能相乘嗎? (能,但有條件)3、兩個正數(shù)的均值不等式是: 三個正數(shù)的均值不等式是: n個正數(shù)的均值不等式是: 4、兩個正數(shù) 的調(diào)和平均數(shù)、幾何平均數(shù)、算術(shù)平均數(shù)、均方根之間的關(guān)系是6、 雙向不等式是: 左邊在 時取得等號,右邊在 時取得等號。五、 數(shù)列1、等差數(shù)列的通項公式是 ,前n項和公式是: = 。2、等比數(shù)列的通項公式是 ,前n項和公式是: 3、當(dāng)?shù)缺葦?shù)列 的公比q滿足 <1時, =S= 。一般地,如果無窮數(shù)列 的前n項和的極限 存在,就把這個極限稱為這個數(shù)列的各項和(或所有項的和),用S表示,即S= 。4、若m、n、p、qN,且 ,那么:當(dāng)數(shù)列 是

13、等差數(shù)列時,有 ;當(dāng)數(shù)列 是等比數(shù)列時,有 。5、 等差數(shù)列 中,若Sn=10,S2n=30,則S3n=60;6、等比數(shù)列 中,若Sn=10,S2n=30,則S3n=70;定理: 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線

14、平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 2 高中數(shù)學(xué)公式 23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 24 推論(AAS)

15、 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并

16、且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關(guān)于

17、某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上 45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2 ,那么這個三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的外角和等于360° 50多邊形內(nèi)角和定理 n邊形的

18、內(nèi)角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個角都是直角 61矩形

19、性質(zhì)定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71定理1 關(guān)于中心對稱的兩個圖形是全等的 72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一 點平分,那么這兩個圖形關(guān)于這一點對稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論