版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、對于一次函數(shù)對于一次函數(shù) 、反比例函數(shù)、反比例函數(shù)我們是如何學習的?我們是如何學習的? 先研究一次函數(shù)的先研究一次函數(shù)的定義定義接著研究一次函數(shù)圖象的接著研究一次函數(shù)圖象的畫法畫法再研究一次函數(shù)的再研究一次函數(shù)的性質(zhì)性質(zhì)最后研究一次函數(shù)的最后研究一次函數(shù)的應用應用想一想想一想這也是今這也是今后我們研后我們研究其它函究其它函數(shù)的方法數(shù)的方法先研究反比例函數(shù)的先研究反比例函數(shù)的定義定義接著研究反比例函數(shù)圖象的接著研究反比例函數(shù)圖象的畫法畫法再研究反比例函數(shù)的再研究反比例函數(shù)的性質(zhì)性質(zhì)最后研究反比例函數(shù)的最后研究反比例函數(shù)的應用應用1什么是反比例函數(shù)?什么是反比例函數(shù)?一般地,形如一般地,形如 y
2、= ( k是常數(shù)是常數(shù), k = 0 ) 的函數(shù)叫做反比例函數(shù)。的函數(shù)叫做反比例函數(shù)。kx 注意:注意:(1)常數(shù))常數(shù) k 稱為比例系數(shù),稱為比例系數(shù),k 是非零常數(shù);是非零常數(shù);(2)自變量)自變量 x 次數(shù)不是次數(shù)不是 1; x 與與 y 的積是非零常數(shù),的積是非零常數(shù), 即即 xy = k,k = 0;(3 3)解析式有三種常見的表達形式)解析式有三種常見的表達形式。xy = k(k 0)y=kxy=kx-1-1(k0k0)想一想想一想 下列函數(shù)中哪些是正比例函數(shù)?下列函數(shù)中哪些是正比例函數(shù)? 哪些是反比例函數(shù)哪些是反比例函數(shù)? ? y = 3x-1y = 2x2y =2x3y =x1
3、y = 3xy =32xy =13xy = x1 做一做做一做 寫出下列函數(shù)關系式,并指出它們是什么函數(shù)寫出下列函數(shù)關系式,并指出它們是什么函數(shù)? ?(1) (1) 當路程當路程 s s 一定時,時間一定時,時間 t t 與速度與速度 v v 的函數(shù)關系的函數(shù)關系(2)(2) 當矩形面積當矩形面積 S S一定時,長一定時,長 a a 與寬與寬 b b 的函數(shù)關系的函數(shù)關系(3) (3) 當三角形面積當三角形面積 S S 一定時,三角形的底邊一定時,三角形的底邊 y y 與高與高 x x 的函數(shù)關系的函數(shù)關系t =sva =bsy =2sx做一做做一做 已知函數(shù)已知函數(shù) 是正比例函數(shù)是正比例函數(shù)
4、, ,則則 m = _ m = _ ; 已知函數(shù)已知函數(shù) 是反比例函數(shù)是反比例函數(shù), ,則則 m = _ m = _ 。 議一議議一議y = xm -7 y = xm -786行!行!我肯定行!我肯定行!已知已知y 與與 x 成反比例成反比例, 并且當并且當 x = 3, y = 7時,求時,求 x 與與 y 的函數(shù)關系式。的函數(shù)關系式。 已知已知y 與與 x2 成反比例成反比例, 并且當并且當 x = 3時時 y = 4,求,求 x = 1.5 時時 y的值。的值。試一試試一試已知已知y與與x2成反比例,當成反比例,當x=3時時y=4求求x=1.5時時y的值的值解:設解:設x2y=k,因為因
5、為 x=3時時y=4,所,所以以94= k,所以所以 k=36 ,當,當x=1.5時時,y=36 1.5=24 如果如果y y與與z成成正正比例比例, z 與與x成成正正比例比例,則則 y 與與x 的函數(shù)關系是:的函數(shù)關系是: 請你判斷請你判斷y與x成正比例2.2.你能回顧總結(jié)一下反比例函數(shù)的圖象性你能回顧總結(jié)一下反比例函數(shù)的圖象性質(zhì)特征嗎質(zhì)特征嗎? ? 與同伴進行交流與同伴進行交流. . 圖象是雙曲線圖象是雙曲線 當當k0k0時時, ,雙曲線分別位于第一雙曲線分別位于第一, ,三象限內(nèi)三象限內(nèi) 當當k0k0k0時時, ,在每一象限內(nèi)在每一象限內(nèi),y,y隨隨x x的增大而減小的增大而減小 當當
6、k0k0時時, ,在每一象限內(nèi)在每一象限內(nèi),y,y隨隨x x的增大而增大的增大而增大 雙曲線無限接近于雙曲線無限接近于x x、y y軸軸, ,但永遠不會與但永遠不會與 坐標軸相交坐標軸相交 雙曲線既是軸對稱圖形又是中心對稱圖形雙曲線既是軸對稱圖形又是中心對稱圖形. .任意一組變量的乘積是一個定值任意一組變量的乘積是一個定值, ,即即xyxy=k=k形狀位置增減性變化趨勢對稱性形 狀位 置增減性變化趨勢對稱性 若關于若關于x,y的函數(shù)的函數(shù) 圖象位于第一、三象限,圖象位于第一、三象限, 則則k的取值范圍是的取值范圍是_xky1 甲乙兩地相距甲乙兩地相距100km,一輛汽車從甲地開往乙地,一輛汽車
7、從甲地開往乙地,把汽車到達乙地所用的時間把汽車到達乙地所用的時間y(h)表示為汽車的平均表示為汽車的平均速度速度x(km/h)的函數(shù),則這個函數(shù)的圖象大致是(的函數(shù),則這個函數(shù)的圖象大致是( ) 如圖,如圖, 函數(shù)函數(shù) 和和y=y=kx+1(k0)kx+1(k0)在同一坐標系內(nèi)的圖在同一坐標系內(nèi)的圖 象大致是象大致是 ( )642-2-4-55O Oy yx x642-2-4-55O Oy yx x642-2-4-55O Oy yx x642-2-4-55O Oy yx xBACDDxky = 已知點(已知點(m,n)在反比例函數(shù)的圖象上,則)在反比例函數(shù)的圖象上,則它的圖象也一定經(jīng)過點它的圖象也一定經(jīng)過點_ 函數(shù)函數(shù) 的圖象上有三點的圖象上有三點(3,y1), (1,y2), (2,y3),則函數(shù)值則函數(shù)值y1、y2、y3的的 大小關系是大小關系是_;為常數(shù))kxky(22要動動腦筋吆要動動腦筋吆! 在平面直角坐標系內(nèi),從反比例函數(shù)在平面直角坐標系內(nèi),從反比例函數(shù)y=k/xy=k/x(k k0 0)的圖象上的一點分別作坐標)的圖象上的一點分別作坐標軸的垂線段,與坐標軸圍成的矩形的面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)業(yè)機械設備租賃服務合同4篇
- 2025年度墓地陵園墓地租賃期限調(diào)整合同4篇
- 2025年度個人與文化傳播公司合作推廣合同2篇
- 2025年度個人信用汽車貸款額度調(diào)整合同4篇
- 2025年度綠色能源儲藏系統(tǒng)采購合同4篇
- 二零二五年度美容院美容院連鎖經(jīng)營管理股份合作合同3篇
- 二零二五版綠色建筑暖通系統(tǒng)性能評估合同4篇
- 2025年度建筑工地臨時宿舍租賃服務合同范本2篇
- 2025年度寧波市事業(yè)單位財務人員勞動合同4篇
- 二零二五年度養(yǎng)老服務業(yè)合作合同2篇
- 碳排放管理員 (碳排放核查員) 理論知識考核要素細目表四級
- 撂荒地整改協(xié)議書范本
- GB/T 20878-2024不銹鋼牌號及化學成分
- 診所負責人免責合同范本
- 2024患者十大安全目標
- 印度與阿拉伯的數(shù)學
- 會陰切開傷口裂開的護理查房
- 實驗報告·測定雞蛋殼中碳酸鈣的質(zhì)量分數(shù)
- 部編版小學語文五年級下冊集體備課教材分析主講
- 電氣設備建筑安裝施工圖集
- 《工程結(jié)構(gòu)抗震設計》課件 第10章-地下建筑抗震設計
評論
0/150
提交評論