版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、線性代數(shù)線性代數(shù)(第五版)(第五版)同濟(jì)大學(xué)數(shù)學(xué)系同濟(jì)大學(xué)數(shù)學(xué)系 編編在以往的學(xué)習(xí)中,我們接觸過二在以往的學(xué)習(xí)中,我們接觸過二元、三元等簡單的線性方程組元、三元等簡單的線性方程組. .但是,從許多實(shí)踐或理論問題里但是,從許多實(shí)踐或理論問題里導(dǎo)出的線性方程組常常含有相當(dāng)導(dǎo)出的線性方程組常常含有相當(dāng)多的未知量,并且未知量的個(gè)數(shù)多的未知量,并且未知量的個(gè)數(shù)與方程的個(gè)數(shù)也不一定相等與方程的個(gè)數(shù)也不一定相等. .我們先討論未知量的個(gè)數(shù)與方程我們先討論未知量的個(gè)數(shù)與方程的個(gè)數(shù)相等的特殊情形的個(gè)數(shù)相等的特殊情形. .在討論這一類線性方程組時(shí),我在討論這一類線性方程組時(shí),我們引入行列式這個(gè)計(jì)算工具們引入行列式
2、這個(gè)計(jì)算工具. .第一章第一章 行列式行列式n內(nèi)容提要內(nèi)容提要1 1 二階與三階行列式二階與三階行列式2 2 全排列及其逆序數(shù)全排列及其逆序數(shù)3 3 n 階行列式的定義階行列式的定義4 4 對換對換5 5 行列式的性質(zhì)行列式的性質(zhì)6 6 行列式按行(列)展開行列式按行(列)展開7 7 克拉默法則克拉默法則行列式的概念行列式的概念. .行列式的行列式的性質(zhì)及計(jì)算性質(zhì)及計(jì)算. . 線性方程組的求解線性方程組的求解. . (選學(xué)內(nèi)容)(選學(xué)內(nèi)容) 行列式是線性代行列式是線性代數(shù)的一種工具!數(shù)的一種工具!學(xué)習(xí)行列式主要學(xué)習(xí)行列式主要就是要能計(jì)算行列就是要能計(jì)算行列式的值式的值. .1 二階與三階行列式
3、二階與三階行列式我們從最簡單的二元線性方程組出發(fā),探我們從最簡單的二元線性方程組出發(fā),探求其求解公式,并設(shè)法化簡此公式求其求解公式,并設(shè)法化簡此公式. .一、二元線性方程組與二階行列式一、二元線性方程組與二階行列式二元線性方程組二元線性方程組 11112212112222a xa xba xa xb 由消元法,得由消元法,得211211221122211)(abbaxaaaa 212221121122211)(baabxaaaa 當(dāng)當(dāng) 時(shí),該方程組有唯一解時(shí),該方程組有唯一解 021122211 aaaa211222112122211aaaabaabx 211222112112112aaaaa
4、bbax 求解公式為求解公式為11112212112222a xa xba xa xb 122122111221221112121211221221b aa bxa aa aa bb axa aa a 二元線性方程組二元線性方程組 請觀察,此公式有何特點(diǎn)?請觀察,此公式有何特點(diǎn)?分母相同,由方程組的四個(gè)系數(shù)確定分母相同,由方程組的四個(gè)系數(shù)確定.分子、分母都是四個(gè)數(shù)分成兩對相乘再分子、分母都是四個(gè)數(shù)分成兩對相乘再 相減而得相減而得.其求解公式為其求解公式為11112212112222a xa xba xa xb 122122111221221112121211221221b aa bxa aa
5、aa bb axa aa a 二元線性方程組二元線性方程組 我們引進(jìn)新的符號來表示我們引進(jìn)新的符號來表示“四個(gè)四個(gè)數(shù)分成兩對相乘再相減數(shù)分成兩對相乘再相減”. .1112112212212122aaDa aa aaa11122122aaaa記號記號 11122122aaaa數(shù)表數(shù)表 表達(dá)式表達(dá)式 稱為由該稱為由該數(shù)表所確定的數(shù)表所確定的二階行列式二階行列式,即,即11221221a aa a 其中,其中, 稱為稱為元素元素. .(1,2;1,2)ijaiji 為為行標(biāo)行標(biāo),表明元素位于第,表明元素位于第i 行;行; j 為為列標(biāo)列標(biāo),表明元素位于第,表明元素位于第j 列列. .原則:橫行豎列原
6、則:橫行豎列二階行列式的計(jì)算二階行列式的計(jì)算 11122122aaaa11221221a aa a主對角線主對角線 副對角線副對角線 即:主對角線上兩元素之積副對角線上兩元素之積即:主對角線上兩元素之積副對角線上兩元素之積 對角線法則對角線法則 二元線性方程組二元線性方程組 11112212112222a xa xba xa xb 若令若令 11122122aaDaa 1211222bbaDa 1221121baDab ( (方程組的系數(shù)行列式方程組的系數(shù)行列式) )則上述二元線性方程組的解可表示為則上述二元線性方程組的解可表示為1122122111221221DDb aa bxa aa a
7、1121212211221221a bb aDxa aa aD 例例1 求解二元線性方程組求解二元線性方程組 1212232121xxxx解解 因?yàn)橐驗(yàn)?1223 D07)4(3 14)2(12112121 D21243121232 D所以所以 11142,7DxD222137DxD 二、三階行列式二、三階行列式定義定義 設(shè)有設(shè)有9個(gè)數(shù)排成個(gè)數(shù)排成3行行3列的數(shù)表列的數(shù)表原則:橫行豎列原則:橫行豎列引進(jìn)記號引進(jìn)記號稱為稱為三階行列式三階行列式. .111213212223313233aaaaaaaaa 112233122331132132132231122133112332a a aa a a
8、a a aa a aa a aa a a111213212223313233aaaaaaaaa主對角線主對角線 副對角線副對角線 二階行列式的對角線法則二階行列式的對角線法則并不適用!并不適用!三階行列式的計(jì)算三階行列式的計(jì)算 對角線法則對角線法則 111213212223313233aaaDaaaaaa 132132a a a 112233a a a 122331a a a 132231a a a 122133a a a 112332a a a 注意:注意:對角線法則只適用于二階與三階行列式對角線法則只適用于二階與三階行列式. . 實(shí)線上的三個(gè)元素的乘積冠正號,實(shí)線上的三個(gè)元素的乘積冠正號,
9、 虛線上的三個(gè)元素的乘積冠負(fù)號虛線上的三個(gè)元素的乘積冠負(fù)號. .12-4-221-34-2D 例例2 計(jì)算行列式計(jì)算行列式 解解按對角線法則,有按對角線法則,有 D4)2()4()3(12)2(21 )3(2)4()2()2(2411 24843264 .14 方程左端方程左端解解由由 得得2111230.49xx 例例3 求解方程求解方程 1229184322 xxxxD, 652 xx2560 xx3.2 xx或或2 全排列及其逆序全排列及其逆序數(shù)數(shù)引例引例用用1、2、3三個(gè)數(shù)字,可以組成多少個(gè)沒三個(gè)數(shù)字,可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?有重復(fù)數(shù)字的三位數(shù)?解解1 2 3123百位百位
10、3 3種放法種放法十位十位1231個(gè)位個(gè)位12 32 2種放法種放法1 1種放法種放法種放法種放法. .共有共有6123 問題問題 把把 n 個(gè)不同的元素排成一列,共有多少種不同的個(gè)不同的元素排成一列,共有多少種不同的 排法?排法?定義定義 把把 n 個(gè)不同的元素排成一列,叫做這個(gè)不同的元素排成一列,叫做這 n 個(gè)元素個(gè)元素的的全排列全排列. n 個(gè)不同元素的所有排列的種數(shù),通常用個(gè)不同元素的所有排列的種數(shù),通常用Pn 表示表示.(1) (2)3 2 1!nPnnnn 顯然顯然 即即n 個(gè)不同的元素一共有個(gè)不同的元素一共有n! 種不同的排法種不同的排法.所有所有6種不同的排法中,只有一種排法種
11、不同的排法中,只有一種排法(123)中的數(shù)字是按從小到大的自然)中的數(shù)字是按從小到大的自然順序排列的,而其他排列中都有大的順序排列的,而其他排列中都有大的數(shù)排在小的數(shù)之前數(shù)排在小的數(shù)之前. .因此大部分的排列都不是因此大部分的排列都不是“順序順序”,而是而是“逆序逆序”. . 3個(gè)不同的元素一共有個(gè)不同的元素一共有3! =6種不同的排法種不同的排法123,132,213,231,312,321對于對于n 個(gè)不同的元素,可規(guī)定各元素之間的標(biāo)準(zhǔn)次序個(gè)不同的元素,可規(guī)定各元素之間的標(biāo)準(zhǔn)次序.n 個(gè)不同的自然數(shù),規(guī)定從小到大為標(biāo)準(zhǔn)次序個(gè)不同的自然數(shù),規(guī)定從小到大為標(biāo)準(zhǔn)次序.定義定義 當(dāng)某兩個(gè)元素的先后
12、次序與標(biāo)準(zhǔn)次序不同時(shí),當(dāng)某兩個(gè)元素的先后次序與標(biāo)準(zhǔn)次序不同時(shí),就就稱這兩個(gè)元素組成一個(gè)稱這兩個(gè)元素組成一個(gè)逆序逆序.例如例如 在排列在排列32514中,中,3 2 5 1 4逆序逆序 逆序逆序 逆序逆序 思考題:思考題:還能找到其它逆序嗎?還能找到其它逆序嗎?答:答:2和和1,3和和1也構(gòu)成逆序也構(gòu)成逆序.定義定義 排列中所有逆序的總數(shù)稱為此排列的排列中所有逆序的總數(shù)稱為此排列的逆序數(shù)逆序數(shù).排列排列 的逆序數(shù)通常記為的逆序數(shù)通常記為 . .1 2ni ii1 2()nt i ii奇排列:奇排列:逆序數(shù)為奇數(shù)的排列逆序數(shù)為奇數(shù)的排列. .偶排列:偶排列:逆序數(shù)為偶數(shù)的排列逆序數(shù)為偶數(shù)的排列.
13、.思考題:思考題:符合標(biāo)準(zhǔn)次序的排列是奇排列還是偶排列?符合標(biāo)準(zhǔn)次序的排列是奇排列還是偶排列? 答:答:符合標(biāo)準(zhǔn)次序的排列(例如:符合標(biāo)準(zhǔn)次序的排列(例如:123)的逆序數(shù))的逆序數(shù)等于零,因而是偶排列等于零,因而是偶排列. .計(jì)算排列的逆序數(shù)的方法計(jì)算排列的逆序數(shù)的方法則此排列的逆序數(shù)為則此排列的逆序數(shù)為12ntttt設(shè)設(shè) 是是 1, 2, , n 這這n 個(gè)自然數(shù)的任一排列,個(gè)自然數(shù)的任一排列,并規(guī)定由小到大為標(biāo)準(zhǔn)次序并規(guī)定由小到大為標(biāo)準(zhǔn)次序. 先看有多少個(gè)比先看有多少個(gè)比 大的數(shù)排在大的數(shù)排在 前面,記為前面,記為 ;再看有多少個(gè)比再看有多少個(gè)比 大的數(shù)排在大的數(shù)排在 前面,記為前面,記
14、為 ;最后看有多少個(gè)比最后看有多少個(gè)比 大的數(shù)排在大的數(shù)排在 前面,記為前面,記為 ;12np pp1p1p1t2p2p2tnpnpnt例例1:求排列求排列 32514 的逆序數(shù)的逆序數(shù).解:解:(32514)010315t 練習(xí):練習(xí):求排列求排列 453162 的逆序數(shù)的逆序數(shù).9t 解:解:3 n 階行列式的定義階行列式的定義一、概念的引入一、概念的引入111213212223313233aaaDaaaaaa 112233122331132132132231122133112332a a aa a aa a aa a aa a aa a a規(guī)律:規(guī)律:1.1.三階行列式共有三階行列式共有
15、6項(xiàng),即項(xiàng),即3!項(xiàng)項(xiàng)2.2.每一項(xiàng)都是位于不同行不同列的三個(gè)元素的乘積每一項(xiàng)都是位于不同行不同列的三個(gè)元素的乘積3.3.每一項(xiàng)可以寫成每一項(xiàng)可以寫成 (正負(fù)號除外),其中(正負(fù)號除外),其中 是是1、2、3的某個(gè)排列的某個(gè)排列. .4.4.當(dāng)當(dāng) 是是偶排列偶排列時(shí),對應(yīng)的項(xiàng)取時(shí),對應(yīng)的項(xiàng)取正號正號; 當(dāng)當(dāng) 是是奇排列奇排列時(shí),對應(yīng)的項(xiàng)取時(shí),對應(yīng)的項(xiàng)取負(fù)號負(fù)號. . 123123pppaaa123p p p123p p p123p p p所以,三階行列式可以寫成所以,三階行列式可以寫成 123123123()123( 1)t p p ppppp p paaa 其中其中 表示對表示對1、2、3的
16、所有排列求和的所有排列求和. 123p p p 二階行列式有類似規(guī)律二階行列式有類似規(guī)律.下面將行列式推廣到一般的情形下面將行列式推廣到一般的情形. 111213212223313233aaaDaaaaaa 112233122331132132132231122133112332a a aa a aa a aa a aa a aa a a二、二、n 階行列式的定義階行列式的定義1. n 階行列式共有階行列式共有 n! 項(xiàng)項(xiàng)2.2.每一項(xiàng)都是位于不同行不同列的每一項(xiàng)都是位于不同行不同列的 n 個(gè)元素的乘積個(gè)元素的乘積3.3.每一項(xiàng)可以寫成每一項(xiàng)可以寫成 (正負(fù)號除外),其中(正負(fù)號除外),其中
17、是是1, 2, , n 的某個(gè)排列的某個(gè)排列. .4.4.當(dāng)當(dāng) 是是偶排列偶排列時(shí),對應(yīng)的項(xiàng)取時(shí),對應(yīng)的項(xiàng)取正號正號; 當(dāng)當(dāng) 是是奇排列奇排列時(shí),對應(yīng)的項(xiàng)取時(shí),對應(yīng)的項(xiàng)取負(fù)號負(fù)號. . 1212nppnpaaa12np pp12np pp12np pp1212121112121222()1212( 1)nnnnnt p ppppnpp ppnnnnaaaaaaDaaaaaa 簡記作簡記作 ,其中其中 為行列式為行列式D的的( (i, j) )元元det()ijaija思考題:思考題: 成立成立嗎?嗎?答:答:符號符號 可以有兩種理解:可以有兩種理解:若理解成絕對值,則若理解成絕對值,則 ;若理
18、解成一階行列式,則若理解成一階行列式,則 . .11 1 11 11 注意:注意:當(dāng)當(dāng)n = 1時(shí),一階行列式時(shí),一階行列式|a| = a,注意不要與,注意不要與絕對值的記號相混淆絕對值的記號相混淆. 例如:一階行列式例如:一階行列式 . 11 111213142223243333444000000aaaaaaaDaaa 例:例:寫出四階行列式中含有因子寫出四階行列式中含有因子 的項(xiàng)的項(xiàng). . 2311aa例:例:計(jì)算行列式計(jì)算行列式解:解:11233244a a a a 11233442.a a a a和和142323241000000000000aaDaa 112213344000000000000aaDaa 112122432323341424344000000aaaDaaaaaaa 解:解:112213344000000000000aaDaa 142323241000000000000aaDaa 11223344a a a a (4321)14233341( 1)ta a a a 14233341a a a a (4321)0123t 3 46.2 其中其中 111213142223243333444000000aaaaaaaDaaa 112122432323341424344000000aaaDaaaaaaa 1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2學(xué)會(huì)溝通交流(說課稿)-2023-2024學(xué)年道德與法治五年級上冊統(tǒng)編版
- 2025暫估價(jià)材料公開招標(biāo)合同范本變頻水泵排污泵
- 6~9的認(rèn)識(shí)(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 2025以買賣合同擔(dān)保
- 2024年秋九年級化學(xué)上冊 第四單元 自然界的水說課稿 (新版)新人教版
- 2023三年級英語上冊 Assessment 3說課稿1 湘少版
- 路基邊坡防滑平臺(tái)施工方案
- Unit 4 My tidy bag Lesson 1 I have a big bag (說課稿)-2024-2025學(xué)年粵人版(2024)英語三年級上冊
- 2023八年級地理上冊 第一章 中國的疆域與人口第一節(jié) 中國的疆域說課稿 (新版)湘教版
- 出租代工合同范例
- (康德一診)重慶市2025屆高三高三第一次聯(lián)合診斷檢測 英語試卷(含答案詳解)
- 2025年福建泉州文旅集團(tuán)招聘24人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 建筑行業(yè)砂石物資運(yùn)輸方案
- 腫瘤全程管理
- 融資報(bào)告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024風(fēng)能發(fā)電系統(tǒng)風(fēng)力發(fā)電場監(jiān)控系統(tǒng)通信第71部分:配置描述語言
- 污泥處置合作合同模板
- 腦梗死的護(hù)理查房
- 2025高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):概率與統(tǒng)計(jì)的綜合應(yīng)用(十八大題型)含答案
- 2024-2030年中國紫蘇市場深度局勢分析及未來5發(fā)展趨勢報(bào)告
評論
0/150
提交評論