初中數(shù)學(xué)教學(xué)論文 談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)_第1頁
初中數(shù)學(xué)教學(xué)論文 談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)_第2頁
初中數(shù)學(xué)教學(xué)論文 談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)_第3頁
初中數(shù)學(xué)教學(xué)論文 談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)_第4頁
初中數(shù)學(xué)教學(xué)論文 談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、談?wù)n改形勢下的中考數(shù)學(xué)復(fù)習(xí)中考試題考察學(xué)生的分析能力、動手能力、探究能力、創(chuàng)新能力,就是積極支持、參與、探索課程和教學(xué)改革,為我們合理調(diào)整教學(xué)內(nèi)容、靈活安排備考復(fù)習(xí)提供了有力證據(jù)。6年我省將有個課改實驗區(qū)初中畢業(yè)生迎來實施課改后的首次中考,未實行課改的畢業(yè)考試也會滲透課改理念。面對全新的課程標(biāo)準(zhǔn)和評價體系,中考怎么考,成了廣大教師、學(xué)生及家長非常關(guān)注的問題。一、學(xué)習(xí)研究,更新觀念、中考數(shù)學(xué)命題的依據(jù)及基本要求。中考數(shù)學(xué)命題依據(jù)教育部印發(fā)的九年義務(wù)教育全日制初級中學(xué)數(shù)學(xué)教學(xué)大綱(試用修訂版)及數(shù)學(xué)課程標(biāo)準(zhǔn)。教育部年在有關(guān)文件中明確指出,考試應(yīng)與學(xué)科學(xué)習(xí)目標(biāo)及其他評價方式相結(jié)合,要根據(jù)考試的目的、

2、性質(zhì)、內(nèi)容和對象選擇相應(yīng)的考試方法;充分利用考試促進每個學(xué)生的進步。中考的根本目的在于更好地提高學(xué)生的綜合素質(zhì)和教師的教學(xué)水平,以進一步推動實施素質(zhì)教育。中考數(shù)學(xué)命題的基本要求是:從學(xué)生實際出發(fā),正確反映時代對數(shù)學(xué)教育改革的要求。立足學(xué)生發(fā)展需要,考查數(shù)學(xué)基礎(chǔ)知識、基本技能和基本思想方法。加強對基本運算能力、思維能力、空間觀念以及運用數(shù)學(xué)知識分析和解決簡單實際問題的能力的考查。應(yīng)用性試題應(yīng)體現(xiàn)時代要求,貼近學(xué)生的生活實際。通過科學(xué)地設(shè)置開放性試題、動態(tài)探究性試題、閱讀理解題等新題型,加強對學(xué)生創(chuàng)新意識的考查;加強對數(shù)學(xué)活動、數(shù)學(xué)知識發(fā)生過程的考查。防止編造人為的、繁難的證明題;杜絕非數(shù)學(xué)本質(zhì)的

3、、似是而非的題目。在課改形勢下,中考數(shù)學(xué)命題以數(shù)學(xué)課程標(biāo)準(zhǔn)為依據(jù),全面體現(xiàn)新課程的要求。試題內(nèi)容會著力加強與社會實際和學(xué)生生活的聯(lián)系,注重考查學(xué)生在具體情境中運用所學(xué)知識分析和解決問題的能力。不降低雙基能力的基本要求,但同時減少死記硬背內(nèi)容,杜絕設(shè)置偏題、難題,注意各種題型的結(jié)合和題量的適度等。強調(diào)“過程與方法”、“情感態(tài)度價值觀”等在教學(xué)過程中的滲透,體現(xiàn)“以人為本”的原則。全面提高各類學(xué)生的數(shù)學(xué)素質(zhì),努力實現(xiàn):人人學(xué)有價值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展。、數(shù)學(xué)命題趨勢。在從現(xiàn)行教學(xué)大綱逐步新課程標(biāo)準(zhǔn)過渡的今天,中考數(shù)學(xué)命題將在遵循現(xiàn)行教學(xué)大綱基礎(chǔ)上,會有意識

4、地體現(xiàn)新課程標(biāo)準(zhǔn)的精神,引導(dǎo)教師向新課程標(biāo)準(zhǔn)過渡。中考數(shù)學(xué)命題“狠抓基礎(chǔ),注重過程,滲透思想,突出能力,強調(diào)應(yīng)用,著重創(chuàng)新”的指導(dǎo)思想不會改變。體現(xiàn)新的課程標(biāo)準(zhǔn),注重試題的基礎(chǔ)性,注重能力,特別是創(chuàng)新能力的考查和知識的綜合運用、實際運用。加強學(xué)生運用能力,增強創(chuàng)新精神,廢除偏難、人為編造的試題,注重考察核心內(nèi)容和基本能力,注重考察學(xué)生用數(shù)學(xué)的意識,突出數(shù)學(xué)方法,理解和運用;關(guān)注獲取數(shù)學(xué)信息,認(rèn)識數(shù)學(xué)對象的基本過程和方法。從而體現(xiàn)中考指揮棒的作用,進一步推動初中數(shù)學(xué)教學(xué)向素質(zhì)教育的轉(zhuǎn)變。目前與新課程相適應(yīng)的新特點主要有:()在數(shù)與代數(shù)式領(lǐng)域中,規(guī)律意識類試題將成為主流。規(guī)律意識類試題有助于引導(dǎo)學(xué)

5、生在平時的學(xué)習(xí)過程中進行自覺的探索,使學(xué)生在自主探索的過程中更好地理解代數(shù)式的意義和作用,培養(yǎng)學(xué)生的探究能力。近年來,規(guī)律意識類試題在各地中考數(shù)學(xué)試題中都有體現(xiàn)。()試題難度降低,將從以往的論證轉(zhuǎn)向發(fā)現(xiàn)、猜測和探究。為順應(yīng)國際潮流和適應(yīng)課改要求,幾何考查開始降低難度,幾何證明題分值開始減少。幾何試題轉(zhuǎn)為主要考查學(xué)生對圖形敏銳的觀察力和對數(shù)學(xué)規(guī)律的發(fā)現(xiàn)探究能力。讓學(xué)生從常見的幾何圖形中提出問題,并通過對問題的探索,發(fā)現(xiàn)數(shù)學(xué)規(guī)律。代數(shù)方面,隨著計算機應(yīng)用的日漸普及,運算能力的要求有所降低,尤其是一些較為繁、難的計算題目沒有出現(xiàn),中考數(shù)學(xué)試題的計算量都很小,這也是中考命題的一個趨勢。()考查創(chuàng)新意識

6、和實踐能力的試題將成為命題的方向。創(chuàng)新意識的激發(fā),創(chuàng)新思維的訓(xùn)練和實踐能力的培養(yǎng),是素質(zhì)教育中最具活力的課題。由于開放性、探究性試題有利于考查學(xué)生的思維能力與創(chuàng)新意識,增加創(chuàng)新題型,突出試題的開放性、探究性,成為最具熱點的問題之一。不求結(jié)論的唯一性,培養(yǎng)學(xué)生的決策意識將是今后中考數(shù)學(xué)命題的方向。()關(guān)注實際生活,聚焦社會熱點。新課程標(biāo)準(zhǔn)特別強調(diào)數(shù)學(xué)背景的現(xiàn)實性和“數(shù)學(xué)化”。以學(xué)生熟悉的現(xiàn)實生活為問題的背景,讓學(xué)生從具體的問題情境中抽象出數(shù)量關(guān)系,歸納出變化規(guī)律,并能用數(shù)學(xué)符號表示,最終解決實際問題。這類注重聯(lián)系實際考查學(xué)生數(shù)學(xué)應(yīng)用能力的問題,體現(xiàn)時代性,并且結(jié)合社會熱點、焦點問題,引導(dǎo)學(xué)生關(guān)注

7、國家、人類和世界的命運。既有強烈的德育功能,又可以讓學(xué)生從數(shù)學(xué)的角度分析社會現(xiàn)象,體會數(shù)學(xué)在現(xiàn)實生活中的作用,是中考命題的熱點。每年的社會熱點問題都會被中考數(shù)學(xué)試題所“利用”。二、中考數(shù)學(xué)復(fù)習(xí)中應(yīng)遵循的基本理念、以教學(xué)大綱、課程標(biāo)準(zhǔn)、現(xiàn)行課本為依據(jù),重視基礎(chǔ)知識、基本方法的鞏固和提高。注重基礎(chǔ),復(fù)習(xí)要立足于課本,從教科書中尋找中考題的“影子”。盡管近年來中考數(shù)學(xué)有許多新題型,但所占分值比例較大的仍然是傳統(tǒng)的基本問題。多數(shù)試題取材于教科書,試題的構(gòu)成是在教科書中的例題、練習(xí)題、習(xí)題的基礎(chǔ)上通過類比、加工改造、加強條件或減弱條件、延伸或擴展而成的,也就是說,教科書中的例題、練習(xí)題、習(xí)題為編擬中考數(shù)

8、學(xué)試題提供了豐富的題源,所以在備考中考的第一階段,應(yīng)以教科書為藍本。特別是對容易題的考查,應(yīng)該讓學(xué)生掌握典型的例、習(xí)題,掌握學(xué)習(xí)方法,對例、習(xí)題能舉一反三,觸類旁通,變條件、變結(jié)論、變圖形、變式子、變表達方式等。因此,在中考復(fù)習(xí)中一定要重視“雙基”(基礎(chǔ)知識,基本技能)訓(xùn)練,基礎(chǔ)知識應(yīng)為重點。首先引導(dǎo)學(xué)生構(gòu)建知識結(jié)構(gòu),讓各種概念、公理、定理、公式、常用結(jié)論及解題方法、技巧,都能在學(xué)生的頭腦中再現(xiàn)。其次,深入挖掘課本題,并能將課本題進行變式;延伸課本題結(jié)論;綜合課本題結(jié)論;合并課本題圖形;應(yīng)用課本題結(jié)論建模等等。讓學(xué)生扎扎實實地從實際水平開始,夯實基礎(chǔ),充分體會基礎(chǔ)知識在解題中的指導(dǎo)作用。、能力

9、立意,重視對學(xué)生運用所學(xué)的知識和技能分析問題和解決問題的能力的培養(yǎng)。課堂教學(xué)要引導(dǎo)學(xué)生深層次地參與教學(xué)過程,讓學(xué)生在觀察、實驗的活動中,通過比較、分析、歸納、類比、抽象等思維過程,完成知識的猜想和證明,使學(xué)生既加深對知識的理解,又學(xué)習(xí)到創(chuàng)造的策略和方法,從而激起求知欲望和創(chuàng)新的熱情。近年來,全國不少地方的試題都不是局限于對知識本身的考查,而是重在創(chuàng)設(shè)一個新穎的情境,考查學(xué)生在具體情境中靈活應(yīng)用知識去解決問題的能力,這對引導(dǎo)教師在教學(xué)中注意突出教學(xué)過程可起到良好的導(dǎo)向作用。、增強探究性,實踐創(chuàng)新,注重培養(yǎng)創(chuàng)新意識和能力。當(dāng)前,對數(shù)學(xué)開放性題目的研究已成為數(shù)學(xué)教學(xué)的熱點問題,認(rèn)真研究開放探究性問題

10、,無疑對轉(zhuǎn)變觀念、改進教學(xué)、加強數(shù)學(xué)思維能力的培養(yǎng)都有十分積極的意義。在初中數(shù)學(xué)教學(xué)中,要依據(jù)學(xué)生的年齡特點和認(rèn)知水平設(shè)計探索性和開放性的問題,給學(xué)生提供自主探索的機會,使學(xué)生理解數(shù)學(xué)問題是怎樣提出的,數(shù)學(xué)知識是怎樣形成的,數(shù)學(xué)理論是怎樣發(fā)展的,從中領(lǐng)悟數(shù)學(xué)中的辯證關(guān)系。近些年來,不少地區(qū)中考試題中的開放探究型題目,對此發(fā)揮了很好的導(dǎo)向作用。創(chuàng)新是民族的靈魂,在中考命題中加強能力考查,注重知識的有機結(jié)合,注重探究能力和應(yīng)用意識,促進優(yōu)化初中數(shù)學(xué)教學(xué)過程,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力,這是命題逐步走向成熟的要求。在中考試題中逐漸加大對創(chuàng)新能力考查的力度,對于促進教育觀念的更新,推動教學(xué)過程和改革

11、,提高教學(xué)質(zhì)量都有十分積極的作用。培養(yǎng)學(xué)生創(chuàng)新意識和實踐能力,是現(xiàn)代素質(zhì)教育的基本理念之一。在中考復(fù)習(xí)中,要善于將書本知識與學(xué)生的生活實際聯(lián)系起來,科學(xué)地設(shè)計探究性試題和開放性試題,誘發(fā)學(xué)生的求知欲,鼓勵學(xué)生獨立思考,并學(xué)會用數(shù)學(xué)的思維方式去觀察、分析社會,從而解決日常生活中的實際問題。、學(xué)用結(jié)合,增強學(xué)生用數(shù)學(xué)的意識。近年來,隨著社會發(fā)展對人才需求的變化,用所學(xué)知識解決日常生活中的實際問題已成為我們教育教學(xué)的主要目的,數(shù)學(xué)知識來源于實際生活,反過來,為生活、生產(chǎn)服務(wù)。多注意發(fā)生在學(xué)生身邊的事情,如銀行商標(biāo)圖案,騎自行車反映出來的函數(shù)圖象,測量電視塔的高度,投寄平信應(yīng)付的郵費,購買商品如何省錢

12、等等,還要注意與教材上內(nèi)容的類比。函數(shù)應(yīng)用題目通過建立數(shù)學(xué)模型,把實際問題數(shù)學(xué)化,有利于提高學(xué)生抽象思維能力,應(yīng)特別注意。在中考試題中增加聯(lián)系實際的應(yīng)用問題,有利于推動數(shù)學(xué)教學(xué)聯(lián)系實際。這是時代發(fā)展的需要,是數(shù)學(xué)學(xué)科的特點所決定的。目前這類題目的設(shè)計要符合學(xué)生年齡特點和心理特征,適合學(xué)生的認(rèn)知水平,既要貼近生活、聯(lián)系實際,又要靠近課本,使學(xué)生有興趣、有能力去嘗試解決生活中的數(shù)學(xué)問題。教學(xué)中要堅持由淺入深、循序漸進、逐步提高的原則,這會給學(xué)生帶來新鮮感和親近感,它有利于扭轉(zhuǎn)“背定義、套公式、記題型、對模式”的死板僵化的學(xué)習(xí)方法,促使學(xué)生生動活潑、主動地學(xué)習(xí),使學(xué)生的實踐能力得到鍛煉。、降低難度,

13、復(fù)習(xí)要符合學(xué)生的實際,減輕負(fù)擔(dān),拓寬學(xué)生思維的空間和時間。過去,繁難的幾何問題使許多學(xué)生頭痛。近年來,中考降低了幾何證題的難度。修訂大綱刪去了利用切線長定理、弦切角定理、相交弦定理和切割線定理進行有關(guān)的證明。當(dāng)然,這些定理還可用于幾何計算題。另一方面平面幾何試題轉(zhuǎn)而考查學(xué)生對幾何事實的理解和合理的推理能力,明顯地降低了幾何試題的難度,它與國際上降低幾何形式證明題的難度潮流是一致的,也是今后試題改革的趨勢。代數(shù)方面,降低計算難度的有:削弱了一元二次方程知識的專項考查,只要求解簡單的數(shù)字系數(shù)的一元二次方程。刪除的內(nèi)容有:一元二次方程根與系數(shù)的關(guān)系;利用一元二次方程的求根公式在實數(shù)范圍內(nèi)分解二次三項

14、式;可化為一元二次方程的分式方程;列出可化為一元二次方程的分式方程解應(yīng)用題;二元二次方程。另一方面方程的思想方法已融合于勾股定理、相似形、解直角三角形、圓、函數(shù)中進行了考查。能力的考查要有一個循序漸進的過程,可以從設(shè)置小題開始,逐步提高要求。試題情境設(shè)置要新穎,要符合學(xué)生實際,敘述上不宜過長,應(yīng)用知識不宜過難,使學(xué)生具有操作的時間和可能。、注重閱讀理解能力的培養(yǎng),加強識圖能力和處理圖表信息能力。要正確解題的前提是正確理解題意,特別是閱讀理解題,由于所提供材料往往不是課本上的直接內(nèi)容,因此,在中考復(fù)習(xí)中,一定要重視學(xué)生閱讀理解能力的培養(yǎng)??v觀近年來中考數(shù)學(xué)試題,很多試題都是以圖像、圖表為背景展現(xiàn)

15、在考生面前,這方面的試題不拘泥于大綱和課本,形式多樣,有利于在人生智能發(fā)展的黃金時期初中階段培養(yǎng)學(xué)生的自學(xué)能力、創(chuàng)新思維和實踐能力,適應(yīng)時代需要。這類題目一般是通過觀察圖像、整理信息,抽象出數(shù)學(xué)問題,并用數(shù)學(xué)語言抽象成數(shù)學(xué)模型,使學(xué)生“親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋與應(yīng)用的過程”,有利于學(xué)生理解、掌握相關(guān)知識和方法,形成良好的數(shù)學(xué)思維習(xí)慣和應(yīng)用意識,感受到數(shù)學(xué)創(chuàng)造的樂趣,樹立學(xué)好數(shù)學(xué)的自信心。、加強數(shù)學(xué)思想和方法的訓(xùn)練。數(shù)學(xué)思想方法是數(shù)學(xué)精髓,是數(shù)學(xué)基本知識的重要組成部分,是一個人終身發(fā)展的基礎(chǔ),考查數(shù)學(xué)思想方法是考查學(xué)生能力必由之路。中考數(shù)學(xué)試題特別重視突出數(shù)學(xué)思想和方法的考查,

16、初中數(shù)學(xué)中常用的基本方法有:配方法、換元法、待定系數(shù)法、觀察法等;數(shù)學(xué)思想有:函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想、化歸思想等。在中考數(shù)學(xué)復(fù)習(xí)中,應(yīng)有意識、有目的、適時地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生有效地利用數(shù)學(xué)思想方法解決相關(guān)問題。要注意讓學(xué)生針對具體題目總結(jié)、體會這些數(shù)學(xué)方法和數(shù)學(xué)思想。三、優(yōu)化復(fù)習(xí),全面提高要搞好初中數(shù)學(xué)復(fù)習(xí)工作,首先要確定復(fù)習(xí)要點,制定復(fù)習(xí)計劃,復(fù)習(xí)可分四個階段進行。第一階段:回歸課本中考復(fù)習(xí),時間緊,任務(wù)重,但絕不可因此而脫離教材。相反,要抓住教材,在總體上把握教材,明確每一章、節(jié)的知識在整體中的地位、作用。以課本為基礎(chǔ),全面復(fù)習(xí)。章節(jié)之間善于歸總;知識之間善于轉(zhuǎn)化;例

17、題習(xí)題善于變化;分段訓(xùn)練,分類推進。第二階段:單元訓(xùn)練,注重評講練是基礎(chǔ),評是精華。練習(xí)后一定要講評,只練不評,往往是走過場,收不到實效。訓(xùn)練時,要求學(xué)生按照四個步驟來解題:()審題,已知是什么?求證或求解的問題是什么?()思考,需要用哪些數(shù)學(xué)知識和思想方法去解決問題?本問題有幾種方法解?哪種方法較簡便?()求解,格式規(guī)范,表達清楚,書寫整潔,步步有據(jù)。()反思,本題解法中是否有不合情理的地方?它與哪些題有聯(lián)系?有沒有規(guī)律性的東西?是否發(fā)現(xiàn)新的結(jié)論等等。適當(dāng)時候,還應(yīng)該要求學(xué)生作復(fù)習(xí)總結(jié)。第三階段:綜合訓(xùn)練數(shù)學(xué)教學(xué)中要注重使學(xué)生學(xué)到的知識構(gòu)成網(wǎng)絡(luò)、形成系統(tǒng)、打破章節(jié)、學(xué)科的界限,提高綜合應(yīng)用知識的能力和遷移能力。在單元訓(xùn)練的基礎(chǔ)上,再進行代數(shù)、幾何單學(xué)科綜合;代數(shù)、幾何兩學(xué)科綜合;專題研究和跨學(xué)科綜合。在知識網(wǎng)絡(luò)的交匯點上設(shè)計試題,促進學(xué)生對所學(xué)知識主動地進行歸納和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論