線性規(guī)劃常見(jiàn)題型大全_第1頁(yè)
線性規(guī)劃常見(jiàn)題型大全_第2頁(yè)
線性規(guī)劃常見(jiàn)題型大全_第3頁(yè)
線性規(guī)劃常見(jiàn)題型大全_第4頁(yè)
線性規(guī)劃常見(jiàn)題型大全_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、.絕密啟用前2014-2015學(xué)年度?學(xué)校8月月考卷試卷副標(biāo)題考試范圍:xxx;考試時(shí)間:100分鐘;命題人:xxx題號(hào)一二三總分得分注意事項(xiàng):1答題前填寫好自己的姓名、班級(jí)、考號(hào)等信息2請(qǐng)將答案正確填寫在答題卡上第I卷(選擇題)請(qǐng)點(diǎn)擊修改第I卷的文字說(shuō)明評(píng)卷人得分一、選擇題(題型注釋)1已知實(shí)數(shù)x,y滿足,則z4xy的最大值為( )A、10 B、8 C、2 D、0【答案】B【解析】試題分析:畫出可行域,根據(jù)圖形可知,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)A(2,0)點(diǎn)時(shí),z4xy取得最大值為8xAy220考點(diǎn):線性規(guī)劃.2若不等式組,表示的平面區(qū)域是一個(gè)三角形區(qū)域,則的取值范圍是( )A. B. C. D.或【答案

2、】D【解析】根據(jù)畫出平面區(qū)域(如圖1所示),由于直線斜率為,縱截距為,自直線經(jīng)過(guò)原點(diǎn)起,向上平移,當(dāng)時(shí),表示的平面區(qū)域是一個(gè)三角形區(qū)域(如圖2所示);當(dāng)時(shí),表示的平面區(qū)域是一個(gè)四邊形區(qū)域(如圖3所示),當(dāng)時(shí),表示的平面區(qū)域是一個(gè)三角形區(qū)域(如圖1所示),故選D.圖1 圖2 圖3考點(diǎn):平面區(qū)域與簡(jiǎn)單線性規(guī)劃.3已知變量x,y滿足約束條件 則的取值范圍是( ) A B C D(3,6 【答案】A【解析】試題分析:畫出可行域,可理解為可行域中一點(diǎn)到原點(diǎn)的直線的斜率,可知可行域的邊界交點(diǎn)為臨界點(diǎn)(),()則可知k的范圍是.考點(diǎn):線性規(guī)劃,斜率.4(5分)(2011廣東)已知平面直角坐標(biāo)系xOy上的區(qū)域

3、D由不等式組給定若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為,則z=的最大值為( )A.3 B.4 C.3 D.4【答案】B【解析】試題分析:首先做出可行域,將z=的坐標(biāo)代入變?yōu)閦=,即y=x+z,此方程表示斜率是的直線,當(dāng)直線與可行域有公共點(diǎn)且在y軸上截距最大時(shí),z有最大值解:首先做出可行域,如圖所示:z=,即y=x+z做出l0:y=x,將此直線平行移動(dòng),當(dāng)直線y=x+z經(jīng)過(guò)點(diǎn)B時(shí),直線在y軸上截距最大時(shí),z有最大值因?yàn)锽(,2),所以z的最大值為4故選B點(diǎn)評(píng):本題考查線性規(guī)劃、向量的坐標(biāo)表示,考查數(shù)形結(jié)合思想解題5已知不等式組 表示的平面區(qū)域的面積等于,則的值為( )A (B)C (D)【答案

4、】D【解析】試題分析:由題意,要使不等式組表示平面區(qū)域存在,需要,不等式組表示的區(qū)域如下圖中的陰影部分,面積,解得,故選D.考點(diǎn):1.線性規(guī)劃求參數(shù)的取值.6設(shè)x,y滿足約束條件,若z=的最小值為,則a的值為(    )A1B2C3D4【答案】A【解析】=1+而表示點(diǎn)(x,y)與點(diǎn)(1,1)連線的斜率由圖知a>0,否則無(wú)可行域,且點(diǎn)(1,1)與點(diǎn)(3a,0)的連線斜率最小,即=a=17已知實(shí)數(shù),滿足條件,則的最小值為( )A B C D 【答案】C【解析】試題分析:如下圖可行區(qū)域?yàn)樯蠄D中的靠近x軸一側(cè)的半圓,目標(biāo)函數(shù),所表示在可行區(qū)域取一點(diǎn)到點(diǎn)(2,0)連線

5、的斜率的最小值,可知過(guò)點(diǎn)(2,0)作半圓的切線,切線的斜率的最小值,設(shè)切線方程為y=k(x-2),則A到切線的距離為1,故.考點(diǎn):1.線性規(guī)劃;2.直線與圓的位置關(guān)系.8若在區(qū)間0,2中隨機(jī)地取兩個(gè)數(shù),則這兩個(gè)數(shù)中較大的數(shù)大于的概率是( )(A) (B) (C) (D)【答案】C【解析】試題分析:設(shè)這兩個(gè)數(shù)為:,則.若兩數(shù)中較大的數(shù)大于,則還應(yīng)滿足:或(只需排除),作出以上不等式組表示的區(qū)域,由幾何概型的概率公式得.選C.考點(diǎn):1、幾何概型;2、不等式組表示的區(qū)域.第II卷(非選擇題)請(qǐng)點(diǎn)擊修改第II卷的文字說(shuō)明評(píng)卷人得分二、填空題(題型注釋)9若實(shí)數(shù),滿足線性約束條件,則的最大值為_(kāi)【答案】

6、.【解析】試題分析:作出不等式組表示的平面區(qū)域,即可行域,則可知直線與直線的交點(diǎn),作直線:,平移直線,可知當(dāng),時(shí),.考點(diǎn):線性規(guī)劃.10已知變量滿足約束條件 若目標(biāo)函數(shù)的最大值為1,則 .【答案】3【解析】試題分析:約束條件所滿足的區(qū)域如圖所示,目標(biāo)函數(shù)過(guò)B(4,1)點(diǎn)是取得最大值,所以,所以.考點(diǎn):線性規(guī)劃.11設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足若z的最大值為12,則實(shí)數(shù)k=【答案】2【解析】作出可行域(如圖),其中A(4,4),B(0,2),C(2,0)過(guò)原點(diǎn)作出直線kx+y=0k=0時(shí),y=0,目標(biāo)函數(shù)z=y在點(diǎn)A處取得最大值4,與題意不符即時(shí),直線kx+y=0即y=kx經(jīng)過(guò)一、三象限,

7、平移直線y=kx可知,目標(biāo)函數(shù)z=kx+y在點(diǎn)A處取得最大值,即,此時(shí)k=2與不符;k>即k<時(shí),直線kx+y=0即y=kx經(jīng)過(guò)一、三象限,平移直線y=kx可知,目標(biāo)函數(shù)z=kx+y在點(diǎn)B處取得最大值,即,此式不成立k<0即k>0時(shí),直線kx+y=0即y=kx經(jīng)過(guò)二、四象限,平移直線y=kx可知,目標(biāo)函數(shù)z=kx+y在點(diǎn)A處取得最大值,即,此時(shí)k=2與k>0相符,所以k=212點(diǎn)是不等式組表示的平面區(qū)域內(nèi)的一動(dòng)點(diǎn),且不等式總成立,則的取值范圍是_.【答案】【解析】試題分析:將不等式化為,只需求出的最大值即可,令,就是滿足不等式的最大值,由簡(jiǎn)單的線性規(guī)劃問(wèn)題解法,可

8、知在處取最大值3,則m取值范圍是.考點(diǎn):簡(jiǎn)單的線性規(guī)劃和轉(zhuǎn)化思想.13設(shè)變量x,y滿足的最大值為.【答案】8【解析】試題分析:這是如圖可行域,目標(biāo)函數(shù),表示可行域內(nèi)的點(diǎn)到直線的距離的2倍,很顯然點(diǎn)A到直線的距離最大,點(diǎn),將其代入點(diǎn)到直線的距離公式得到考點(diǎn):1.線性規(guī)劃;2.點(diǎn)到直線的距離公式.14已知實(shí)數(shù)x,y滿足若zaxy的最大值為3a9,最小值為3a3,則實(shí)數(shù)a的取值范圍為_(kāi)【答案】1,1【解析】作出可行域如圖中陰影部分所示,則z在點(diǎn)A處取得最大值,在點(diǎn)C處取得最小值又kBC1,kAB1,1a1,即1a1.15設(shè)實(shí)數(shù)滿足 向量,若,則實(shí)數(shù)的最大值為 【答案】;【解析】試題分析:因?yàn)椋?

9、故根據(jù)線性規(guī)劃的知識(shí)畫出可行域如圖,則目標(biāo)函數(shù)在點(diǎn)(1,8)處取得最大值6.考點(diǎn):向量平行 線性規(guī)劃16已知點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)滿足,則的最大值是 【答案】【解析】試題分析:作出可行域如圖,則,又是的夾角, 目標(biāo)函數(shù)表示在上的投影,過(guò)作的垂線,垂足為,當(dāng)在可行域內(nèi)移動(dòng)到直線和直線的交點(diǎn)時(shí),在上的投影最大,此時(shí),的最大值為,故答案為考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用,平面向量的數(shù)量積,平面向量的投影.17若實(shí)數(shù)、滿足,則的最大值是_.【答案】4【解析】試題分析:將變形為,表示圓心為,半徑為的圓。令,即。由圖像分析可知圓心到直線距離,解得,所以的最大值是4??键c(diǎn):1線性規(guī)劃、數(shù)形結(jié)合思想;2點(diǎn)到線的距離;18

10、已知為坐標(biāo)原點(diǎn),滿足,則的最大值等于 .【答案】【解析】試題分析:,設(shè),如圖:做出可行域當(dāng)目標(biāo)函數(shù)平移到C點(diǎn)取得最大值,解得,代入目標(biāo)函數(shù),的最大值為.考點(diǎn):1.向量的數(shù)量積的坐標(biāo)表示;2.線性規(guī)劃.19已知實(shí)數(shù)x,y滿足 則r的最小值為_(kāi)【答案】【解析】作出約束條件表示的可行域,如圖中的三角形,三角形內(nèi)(包括邊)到圓心的最短距離即為r的值,所以r的最小值為圓心到直線yx的距離,所以r的最小值為.20已知P(x,y)滿足則點(diǎn)Q(xy,y)構(gòu)成的圖形的面積為_(kāi)【答案】2【解析】令xyu,yv,則點(diǎn)Q(u,v)滿足,在uOv平面內(nèi)畫出點(diǎn)Q(u,v)所構(gòu)成的平面區(qū)域如圖,易得其面積為2.21已知實(shí)數(shù)

11、,滿足約束條件則的最大值為 【答案】【解析】試題分析:解線性規(guī)劃問(wèn)題,不僅要正確確定可行域,本題是直角三角形及其內(nèi)部,而且要挖出目標(biāo)函數(shù)的幾何意義,本題中可理解為坐標(biāo)原點(diǎn)到可行域中點(diǎn)的距離的平方.要求目標(biāo)函數(shù)最大值,就是求的最小值,即坐標(biāo)原點(diǎn)到直線的距離的平方,為.考點(diǎn):線性規(guī)劃求最值22曲線y在點(diǎn)M(,0)處的切線與兩坐標(biāo)軸圍成的三角形區(qū)域?yàn)镈(包含三角形內(nèi)部與邊界)若點(diǎn)P(x,y)是區(qū)域D內(nèi)的任意一點(diǎn),則x4y的最大值為 【答案】4【解析】試題分析:, , ,所以曲線在點(diǎn)處的切線方程為:,即: ,它與兩坐標(biāo)軸所圍成的三角形區(qū)域如下圖所示:令,將其變形為 ,當(dāng)變化時(shí),它表示一組斜率為,在軸上

12、的截距為的平行直線,并且該截距越在,就越大,由圖可知,當(dāng)直線經(jīng)過(guò)時(shí),截距最大,所以,故答案為:4.考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、求導(dǎo)公式;3、線必規(guī)劃.23已知實(shí)數(shù)x,y滿足,則的最小值是 .【答案】2【解析】試題分析:線性不等式組表示的可行域如圖: ,。表示點(diǎn)與可行域內(nèi)的點(diǎn)間的距離的平方。,點(diǎn)到直線的距離為,因?yàn)椋???键c(diǎn):線性規(guī)劃。24已知實(shí)數(shù),滿足約束條件則的最大值為 【答案】【解析】試題分析:解線性規(guī)劃問(wèn)題,不僅要正確確定可行域,本題是直角三角形及其內(nèi)部,而且要挖出目標(biāo)函數(shù)的幾何意義,本題中可理解為坐標(biāo)原點(diǎn)到可行域中點(diǎn)的距離的平方.要求目標(biāo)函數(shù)最大值,就是求的最小值,即坐標(biāo)原點(diǎn)到直線

13、的距離的平方,為.考點(diǎn):線性規(guī)劃求最值25在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積為,則實(shí)數(shù)的值是 .【答案】2【解析】試題分析:等價(jià)于,即直線的下方和直線的上方,而與直線圍成三角形區(qū)域,當(dāng)時(shí),不等式組表示的平面區(qū)域的面積為.考點(diǎn):不等式中的線性規(guī)劃問(wèn)題.26已知實(shí)數(shù)滿足則的最大值為_(kāi).【答案】16【解析】試題分析:如圖實(shí)數(shù)滿足滿足的可行域是三角形OAB的陰影部分. 由可化為.所以求z的最大值即求出的最小值.目標(biāo)函數(shù),如圖所示.過(guò)點(diǎn)B即為m所求的最小值.因?yàn)锽(-2,0)所以m=-4.所以.故填16.考點(diǎn):1.線性規(guī)劃問(wèn)題.2.指數(shù)函數(shù)的運(yùn)算.評(píng)卷人得分三、解答題(題型注釋)27已知x

14、,y滿足約束條件,試求解下列問(wèn)題(1)z的最大值和最小值;(2)z的最大值和最小值;(3)z|3x4y3|的最大值和最小值【答案】(1)zmax,zmin.(2)zmax1,zmin(3)zmax14,zmin5.【解析】(1)z表示的幾何意義是區(qū)域中的點(diǎn)(x,y)到原點(diǎn)(0,0)的距離,則zmax,zmin.(2)z表示區(qū)域中的點(diǎn)(x,y)與點(diǎn)(2,0)連線的斜率,則zmax1,zmin.(3)z|3x4y3|5·,而表示區(qū)域中的點(diǎn)(x,y)到直線3x4y30的距離,則zmax14,zmin528設(shè)x,y滿足約束條件,(1)畫出不等式表示的平面區(qū)域,并求該平面區(qū)域的面積;(2)若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,求的最小值.【答案】(1)10;(2)4【解析】試題分析:(1)如圖先在直角坐標(biāo)系中畫出各直線方程,再用特殊點(diǎn)代入法判斷各不等式表示的平面區(qū)域,其公共部分即為不等式組表示的平面區(qū)域,用分割法即可求出其面積。(2)畫出目標(biāo)函數(shù)線,平移使其經(jīng)過(guò)可行域當(dāng)目標(biāo)函數(shù)線的縱截距最大時(shí),取得最大值,求出滿足條件

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論