版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第一章常用邏輯用語1.1命題及其關(guān)系命題(一)教學(xué)目標(biāo)、知識(shí)與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;、過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;、情感、態(tài)度與價(jià)值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。 (二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):命題的概念、命題的構(gòu)成難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。(三)教學(xué)過程學(xué)生探究過程:1復(fù)習(xí)回顧初中已學(xué)過命題的知識(shí),請(qǐng)同學(xué)們回顧:什么叫做命題?2
2、思考、分析下列語句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?(1)若直線ab,則直線a與直線b沒有公共點(diǎn) (2)2+4=7(3)垂直于同一條直線的兩個(gè)平面平行()若x2=1,則x=1()兩個(gè)全等三角形的面積相等()能被整除3討論、判斷學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。教師的引導(dǎo)分析:所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清。4抽象、歸納定義:一般地,我們把用語言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句叫做命題 命題的定義的要點(diǎn):能判斷真假的陳述句在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,
3、請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子 教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對(duì)命題這一概念的理解5練習(xí)、深化判斷下列語句是否為命題? ()空集是任何集合的子集 ()若整數(shù)a是素?cái)?shù),則是a奇數(shù)()指數(shù)函數(shù)是增函數(shù)嗎? ()若平面上兩條直線不相交,則這兩條直線平行() ()x讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個(gè)語句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個(gè)條件缺一不可疑問句、祈使句、感嘆句均不是命題解略。引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?
4、通過對(duì)此問的思考,學(xué)生將清晰地認(rèn)識(shí)到定理、推論都是命題過渡:同學(xué)們都知道,一個(gè)定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?6.命題的構(gòu)成條件和結(jié)論定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成在數(shù)學(xué)中,命題常寫成“若p,則q”或者 “如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論7練習(xí)、深化指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假()若整數(shù)a能被整除,則a是偶數(shù)()若四邊行是菱
5、形,則它的對(duì)角線互相垂直平分()若a0,b0,則a+b0()若a0,b0,則a+b0()垂直于同一條直線的兩個(gè)平面平行此題中的()()()(),較容易,估計(jì)學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題()與()的目的在于:通過這兩個(gè)例子的比較,學(xué)更深刻地理解命題的定義能判斷真假的陳述句,不管判斷的結(jié)果是對(duì)的還是錯(cuò)的。 此例中的命題(),不是“若P,則q”的形式,估計(jì)學(xué)生會(huì)有困難,此時(shí),教師引導(dǎo)學(xué)生一起分析:已知的事項(xiàng)為“條件”,由已知推出的事項(xiàng)為“結(jié)論”解略。過渡:從例中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯(cuò)誤的,那么我們就有了對(duì)
6、命題的一種分類:真命題和假命題8命題的分類真命題、假命題的定義真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題強(qiáng)調(diào):()注意命題與假命題的區(qū)別如:“作直線AB”這本身不是命題也更不是假命題()命題是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。9怎樣判斷一個(gè)數(shù)學(xué)命題的真假?()數(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過證明()要判斷一個(gè)命題是假命題,只需舉一個(gè)反例即可10練習(xí)、深化例:把下列命題寫成“若P,則q”的形式,并判斷
7、是真命題還是假命題:() 面積相等的兩個(gè)三角形全等。() 負(fù)數(shù)的立方是負(fù)數(shù)。() 對(duì)頂角相等。分析:要把一個(gè)命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式解略。11、鞏固練習(xí):、12教學(xué)反思師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容1什么叫命題?真命題?假命題? 2命題是由哪兩部分構(gòu)成的?3怎樣將命題寫成“若P,則q”的形式4如何判斷真假命題教師提示應(yīng)注意的問題:1命題與真、假命題的關(guān)系 2抓住命題的兩個(gè)構(gòu)成部分,判斷一些語句是否為命題判斷假命題,只需舉一個(gè)反例,而判斷真命題,要經(jīng)過證明13作業(yè):P9:習(xí)題1組第1題四種命題四種命題的相互關(guān)系(一)
8、教學(xué)目標(biāo)知識(shí)與技能:了解原命題、逆命題、否命題、逆否命題這四種命題的概念,掌握四種命題的形式和四種命題間的相互關(guān)系,會(huì)用等價(jià)命題判斷四種命題的真假 過程與方法:多讓學(xué)生舉命題的例子,并寫出四種命題,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題、有創(chuàng)造性地解決問題的能力;培養(yǎng)學(xué)生抽象概括能力和思維能力情感、態(tài)度與價(jià)值觀:通過學(xué)生的舉例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的分析問題和解決問題的能力(二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):(1)會(huì)寫四種命題并會(huì)判斷命題的真假;(2)四種命題之間的相互關(guān)系難點(diǎn):(1)命題的否定與否命題的區(qū)別; (2)寫出原命題的逆命題、否命題和逆否命題;(3)分
9、析四種命題之間相互的關(guān)系并判斷命題的真假教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:通過學(xué)生的舉例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的分析問題和解決問題的能力(三)教學(xué)過程學(xué)生探究過程:復(fù)習(xí)引入初中已學(xué)過命題與逆命題的知識(shí),請(qǐng)同學(xué)回顧:什么叫做命題的逆命題?2思考、分析問題1:下列四個(gè)命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù) (2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù)(3)若f(x)不是正弦函數(shù),則f(x)不是周期函數(shù)(4)若f(x)不是周期函數(shù),則f(x)不是正弦函數(shù)歸納總
10、結(jié)問題一通過學(xué)生分析、討論可以得到正確結(jié)論緊接結(jié)合此例給出四個(gè)命題的概念,()和()這樣的兩個(gè)命題叫做互逆命題,()和()這樣的兩個(gè)命題叫做互否命題,()和()這樣的兩個(gè)命題叫做互為逆否命題。抽象概括定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,那么我們把這樣的兩個(gè)命題叫做互逆命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的逆命題讓學(xué)生舉一些互逆命題的例子。定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,那么我們把這樣的兩個(gè)命題叫做互否命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題讓學(xué)生舉一些互否命題
11、的例子。定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,那么我們把這樣的兩個(gè)命題叫做互為逆否命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的逆否命題讓學(xué)生舉一些互為逆否命題的例子。小結(jié): (1) 交換原命題的條件和結(jié)論,所得的命題就是它的逆命題:(2) 同時(shí)否定原命題的條件和結(jié)論,所得的命題就是它的否命題;(3) 交換原命題的條件和結(jié)論,并且同時(shí)否定,所得的命題就是它的逆否命題強(qiáng)調(diào):原命題與逆命題、原命題與否命題、原命題與逆否命題是相對(duì)的。四種命題的形式讓學(xué)生結(jié)合所舉例子,思考:若原命題為“若P,則q”的形式,則它的逆命題、否命題、逆否命題應(yīng)分別
12、寫成什么形式?學(xué)生通過思考、分析、比較,總結(jié)如下:原命題:若P,則q則:逆命題:若q,則P否命題:若P,則q(說明符號(hào)“”的含義:符號(hào)“”叫做否定符號(hào)“p”表示p的否定;即不是p;非p)逆否命題:若q,則P鞏固練習(xí)寫出下列命題的逆命題、否命題、逆否命題并判斷它們的真假:() 若一個(gè)三角形的兩條邊相等,則這個(gè)三角形的兩個(gè)角相等;() 若一個(gè)整數(shù)的末位數(shù)字是,則這個(gè)整數(shù)能被整除;() 若x2=1,則x=1;() 若整數(shù)a是素?cái)?shù),則是a奇數(shù)。思考、分析結(jié)合以上練習(xí)思考:原命題的真假與其它三種命題的真假有什么關(guān)系?通過此問,學(xué)生將發(fā)現(xiàn):原命題為真,它的逆命題不一定為真。原命題為真,它的否命題不一定為真
13、。原命題為真,它的逆否命題一定為真。原命題為假時(shí)類似。結(jié)合以上練習(xí)完成下列表格:原 命 題逆 命 題否 命 題逆 否 命 題真真假真假真假假由表格學(xué)生可以發(fā)現(xiàn):原命題與逆否命題總是具有相同的真假性,逆命題與否命題也總是具有相同的真假性由此會(huì)引起我們的思考:一個(gè)命題的逆命題、否命題與逆否命題之間是否還存在著一定的關(guān)系呢?讓學(xué)生結(jié)合所做練習(xí)分析原命題與它的逆命題、否命題與逆否命題四種命題間的關(guān)系學(xué)生通過分析,將發(fā)現(xiàn)四種命題間的關(guān)系如下圖所示:總結(jié)歸納若P,則q若q,則P原命題互 逆逆命題互否互 為 否逆互否 為 互逆 否否命題逆否命題互 逆若P,則q若q,則P由于逆命題和否命題也是互為逆否命題,因
14、此四種命題的真假性之間的關(guān)系如下:(1)兩個(gè)命題互為逆否命題,它們有相同的真假性;(2)兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系由于原命題和它的逆否命題有相同的真假性,所以在直接證明某一個(gè)命題為真命題有困難時(shí),可以通過證明它的逆否命題為真命題,來間接地證明原命題為真命題例題分析例4: 證明:若p2 q2 2,則p q 2 分析:如果直接證明這個(gè)命題比較困難,可考慮轉(zhuǎn)化為對(duì)它的逆否命題的證明。將“若p2 q2 2,則p q 2”視為原命題,要證明原命題為真命題,可以考慮證明它的逆否命題“若p + q 2,則p2 + q2 2”為真命題,從而達(dá)到證明原命題為真命題的目的證明:若p q 2
15、,則p2 q2(p q)2(p q)2(p q)2×所以p2 q22這表明,原命題的逆否命題為真命題,從而原命題為真命題。練習(xí)鞏固:證明:若a2b2ab,則ab:教學(xué)反思()逆命題、否命題與逆否命題的概念;()兩個(gè)命題互為逆否命題,他們有相同的真假性;()兩個(gè)命題為互逆命題或互否命題,他們的真假性沒有關(guān)系;()原命題與它的逆否命題等價(jià);否命題與逆命題等價(jià):作業(yè)P9:習(xí)題1組第、題12充分條件與必要條件(一)教學(xué)目標(biāo)1.知識(shí)與技能:正確理解充分不必要條件、必要不充分條件的概念;會(huì)判斷命題的充分條件、必要條件2.過程與方法:通過對(duì)充分條件、必要條件的概念的理解和運(yùn)用,培養(yǎng)學(xué)生分析、判斷和
16、歸納的邏輯思維能力 情感、態(tài)度與價(jià)值觀:通過學(xué)生的舉例,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的良好的思維品質(zhì),在練習(xí)過程中進(jìn)行辯證唯物主義思想教育(二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):充分條件、必要條件的概念(解決辦法:對(duì)這三個(gè)概念分別先從實(shí)際問題引起概念,再詳細(xì)講述概念,最后再應(yīng)用概念進(jìn)行論證)難點(diǎn):判斷命題的充分條件、必要條件。關(guān)鍵:分清命題的條件和結(jié)論,看是條件能推出結(jié)論還是結(jié)論能推出條件。教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:通過學(xué)生的舉例,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的良好的思維品質(zhì),在練習(xí)過程中進(jìn)行辯證唯物主義思想教育(三)教學(xué)過程學(xué)生探究過程:1練習(xí)與思考寫出下列兩個(gè)命題的條件和結(jié)論,并判斷
17、是真命題還是假命題?(1)若x a2 + b2,則x 2ab, (2)若ab 0,則a 0.學(xué)生容易得出結(jié)論;命題(1)為真命題,命題()為假命題置疑:對(duì)于命題“若p,則q”,有時(shí)是真命題,有時(shí)是假命題如何判斷其真假的?答:看p能不能推出q,如果p能推出q,則原命題是真命題,否則就是假命題給出定義命題“若p,則q” 為真命題,是指由p經(jīng)過推理能推出q,也就是說,如果p成立,那么q一定成立換句話說,只要有條件p就能充分地保證結(jié)論q的成立,這時(shí)我們稱條件p是q成立的充分條件一般地,“若p,則q”為真命題,是指由p通過推理可以得出q這時(shí),我們就說,由p可推出q,記作:pÞq定義:如果命題“
18、若p,則q”為真命題,即p Þ q,那么我們就說p是q的充分條件;q是p必要條件上面的命題(1)為真命題,即x a2 + b2Þx 2ab,所以“x a2 + b2”是“x 2ab”的充分條件,“x 2ab”是“x a2 + b2”的必要條件3例題分析:例:下列“若p,則q”形式的命題中,那些命題中的p是q的充分條件?(1)若x 1,則x2 4x 3 0;(2)若f(x) x,則f(x)為增函數(shù);(3)若x為無理數(shù),則x2為無理數(shù)分析:要判斷p是否是q的充分條件,就要看p能否推出q解略例:下列“若p,則q”形式的命題中,那些命題中的q是p的必要條件?(1) 若x y,則x2
19、 y2;(2) 若兩個(gè)三角形全等,則這兩個(gè)三角形的面積相等; (3)若a b,則acbc分析:要判斷q是否是p的必要條件,就要看p能否推出q解略、鞏固鞏固:P12 練習(xí) 第1、2、3、4題教學(xué)反思:充分、必要的定義在“若p,則q”中,若pÞq,則p為q的充分條件,q為p的必要條件作業(yè) P14:習(xí)題1.2A組第1(1)(2),2(1)(2)題注:(1)條件是相互的; (2)p是q的什么條件,有四種回答方式: p是q的充分而不必要條件; p是q的必要而不充分條件; p是q的充要條件; p是q的既不充分也不必要條件充要條件 (一)教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):() 正確理解充要條件的定義,了
20、解充分而不必要條件, 必要而不充分條件, 既不充分也不必要條件的定義() 正確判斷充分不必要條件、 必要不充分條件、充要條件、 既不充分也不必要條件.() 通過學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假,2.過程與方法目標(biāo):在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì)3. 情感、態(tài)度與價(jià)值觀:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神(二)教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):1、正確區(qū)分充要條件;2、正確運(yùn)用“條件”的定義解題難點(diǎn):正確區(qū)分充要條件教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性
21、品質(zhì)(三)教學(xué)過程學(xué)生探究過程:1.思考、分析已知p:整數(shù)a是2的倍數(shù);q:整數(shù)a是偶數(shù).請(qǐng)判斷: p是q的充分條件嗎?p是q的必要條件嗎?分析:要判斷p是否是q的充分條件,就要看p能否推出q,要判斷p是否是q的必要條件,就要看q能否推出p易知:pÞq,故p是q的充分條件;又q Þ p,故p是q的必要條件此時(shí),我們說, p是q的充分必要條件.類比歸納一般地,如果既有pÞq ,又有qÞp 就記作 p Û q.此時(shí),我們說,那么p是q的充分必要條件,簡(jiǎn)稱充要條件.顯然,如果p是q的充要條件,那么q也是p的充要條件.概括地說,如果p Û q
22、,那么p 與 q互為充要條件.3.例題分析例1:下列各題中,哪些p是q的充要條件?() p:b0,q:函數(shù)f(x)ax2bxc是偶函數(shù);() p:x 0,y 0,q: xy 0;() p: a b ,q: a + c b + c;() p:x 5, ,q: x 10() p: a b ,q: a2 b2分析:要判斷p是q的充要條件,就要看p能否推出q,并且看q能否推出p解:命題()和()中,pÞq ,且qÞp,即p Û q,故p 是q的充要條件;命題()中,pÞq ,但q¹>p,故p 不是q的充要條件;命題()中,p¹>q
23、 ,但qÞp,故p 不是q的充要條件; 命題()中,p¹>q ,且q¹>p,故p 不是q的充要條件;類比定義一般地,若pÞq ,但q¹>p,則稱p是q的充分但不必要條件;若p¹>q,但qÞp,則稱p是q的必要但不充分條件;若p¹>q,且q¹>p,則稱p是q的既不充分也不必要條件在討論p是q的什么條件時(shí),就是指以下四種之一:若pÞq ,但q¹>p,則p是q的充分但不必要條件;若qÞp,但p¹>q,則p是q的必要但不充分條
24、件;若pÞq,且qÞp,則p是q的充要條件;若p¹>q,且q¹>p,則p是q的既不充分也不必要條件鞏固練習(xí):P14 練習(xí)第 1、2題說明:要求學(xué)生回答p是q的充分但不必要條件、或 p是q的必要但不充分條件、或p是q的充要條件、或p是q的既不充分也不必要條件例題分析例2:已知:O的半徑為r,圓心O到直線l的距離為d求證:dr是直線l與O相切的充要條件分析:設(shè)p:dr,q:直線l與O相切要證p是q的充要條件,只需要分別證明充分性(pÞq)和必要性(qÞp)即可證明過程略例3、設(shè)p是r的充分而不必要條件,q是r的充分條件,r成立
25、,則s成立s是q的充分條件,問(1)s是r的什么條件?(2)p是q的什么條件?教學(xué)反思:充要條件的判定方法如果“若p,則q”與“ 若p則q”都是真命題,那么p就是q的充要條件,否則不是作業(yè):P1:習(xí)題1.2A組第1(3)(2),2(3),3題1.3簡(jiǎn)單的邏輯聯(lián)結(jié)詞且或(一)教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):() 掌握邏輯聯(lián)結(jié)詞“或、且”的含義() 正確應(yīng)用邏輯聯(lián)結(jié)詞“或、且”解決問題() 掌握真值表并會(huì)應(yīng)用真值表解決問題2過程與方法目標(biāo):在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng)3.情感態(tài)度價(jià)值觀目標(biāo):激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積
26、極進(jìn)取的精神(二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或、且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。難點(diǎn):1、正確理解命題“Pq”“Pq”真假的規(guī)定和判定2、簡(jiǎn)潔、準(zhǔn)確地表述命題“Pq”“Pq”. 教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng)(三)教學(xué)過程學(xué)生探究過程:1、引入在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的數(shù)學(xué)比初中更強(qiáng)調(diào)邏輯性如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常
27、犯邏輯性的錯(cuò)誤其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開始接觸一些簡(jiǎn)易邏輯的知識(shí)在數(shù)學(xué)中,有時(shí)會(huì)使用一些聯(lián)結(jié)詞,如“且”“或”“非”。在生活用語中,我們也使用這些聯(lián)結(jié)詞,但表達(dá)的含義和用法與數(shù)學(xué)中的含義和用法不盡相同。下面介紹數(shù)學(xué)中使用聯(lián)結(jié)詞“且”“或”“非”聯(lián)結(jié)命題時(shí)的含義和用法。為敘述簡(jiǎn)便,今后常用小寫字母p,q,r,s,表示命題。(注意與上節(jié)學(xué)習(xí)命題的條件p與結(jié)論q的區(qū)別)2、思考、分析問題1:下列各組命題中,三個(gè)命題間有什么關(guān)系?(1)12能被3整除;12能被4整除;12能被3整除且能被4整除。(2)27是7的倍數(shù);27是9的倍數(shù);27是7的倍數(shù)或是9的倍數(shù)。學(xué)生很容易看到,在第(1)組命題中,命題是由
28、命題使用聯(lián)結(jié)詞“且”聯(lián)結(jié)得到的新命題,在第(2)組命題中,命題是由命題使用聯(lián)結(jié)詞“或”聯(lián)結(jié)得到的新命題,。問題2:以前我們有沒有學(xué)習(xí)過象這樣用聯(lián)結(jié)詞“且”或“或”聯(lián)結(jié)的命題呢?你能否舉一些例子?例如:命題p:菱形的對(duì)角線相等且菱形的對(duì)角線互相平分。命題q:三條邊對(duì)應(yīng)成比例的兩個(gè)三角形相似或兩個(gè)角相等的兩個(gè)三角形相似。3、歸納定義一般地,用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,記作pq讀作“p且q”。一般地,用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,記作pq,讀作“p或q”。命題“pq”與命題“pq”即,命題“p且q”與命題“p或q”中的“且”字與“或” 字與下
29、面兩個(gè)命題中的“且” 字與“或” 字的含義相同嗎?(1)若 xA且xB,則xAB。(2)若 xA或xB,則xAB。定義中的“且”字與“或” 字與兩個(gè)命題中的“且” 字與“或” 字的含義是類似。但這里的邏輯聯(lián)結(jié)詞“且”與日常語言中的“和”,“并且”,“以及”,“既又”等相當(dāng),表明前后兩者同時(shí)兼有,同時(shí)滿足, 邏輯聯(lián)結(jié)詞“或”與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.說明:符號(hào)“”與“”開口都是向下,符號(hào)“”與“”開口都是向上。注意:“p或q”,“p且q”,命題中的“p”、“q”是兩個(gè)命題,而原命題,逆命題,否命題,逆否命題中的“p”,“q”是一個(gè)命題的條件和結(jié)論
30、兩個(gè)部分.4、命題“pq”與命題“pq”的真假的規(guī)定你能確定命題“pq”與命題“pq”的真假嗎?命題“pq”與命題“pq”的真假和命題p,q的真假之間有什么聯(lián)系?引導(dǎo)學(xué)生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個(gè)命題的真假之間的關(guān)系的一般規(guī)律。例如:在上面的例子中,第(1)組命題中,都是真命題,所以命題是真命題。第(2)組命題中,是假命題,是真命題,但命題是真命題。pqpq真真真真假假假真假假假假pqpq真真真真假真假真真假假假(即一假則假) (即一真則真)一般地,我們規(guī)定: 當(dāng)p,q都是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題;當(dāng)p,q
31、兩個(gè)命題中有一個(gè)是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題都是假命題時(shí),pq是假命題。5、例題例1:將下列命題分別用“且”與“或” 聯(lián)結(jié)成新命題“pq” 與“pq”的形式,并判斷它們的真假。(1)p:平行四邊形的對(duì)角線互相平分,q:平行四邊形的對(duì)角線相等。(2)p:菱形的對(duì)角線互相垂直,q:菱形的對(duì)角線互相平分;(3)p:35是15的倍數(shù),q:35是7的倍數(shù).解:(1)pq:平行四邊形的對(duì)角線互相平分且平行四邊形的對(duì)角線相等.也可簡(jiǎn)寫成平行四邊形的對(duì)角線互相平分且相等.pq: 平行四邊形的對(duì)角線互相平分或平行四邊形的對(duì)角線相等. 也可簡(jiǎn)寫成平行四邊形的對(duì)角線互相平分或相等.由于p是真命題,且q
32、也是真命題,所以pq是真命題, pq也是真命題(2)pq:菱形的對(duì)角線互相垂直且菱形的對(duì)角線互相平分. 也可簡(jiǎn)寫成菱形的對(duì)角線互相垂直且平分.pq: 菱形的對(duì)角線互相垂直或菱形的對(duì)角線互相平分. 也可簡(jiǎn)寫成菱形的對(duì)角線互相垂直或平分.由于p是真命題,且q也是真命題,所以pq是真命題, pq也是真命題(3)pq:35是15的倍數(shù)且35是7的倍數(shù). 也可簡(jiǎn)寫成35是15的倍數(shù)且是7的倍數(shù).pq: 35是15的倍數(shù)或35是7的倍數(shù). 也可簡(jiǎn)寫成35是15的倍數(shù)或是7的倍數(shù).由于p是假命題, q是真命題,所以pq是假命題, pq是真命題說明,在用且或或聯(lián)結(jié)新命題時(shí),如果簡(jiǎn)寫,應(yīng)注意保持命題的意思不變例
33、2:選擇適當(dāng)?shù)倪壿嬄?lián)結(jié)詞“且”或“或”改寫下列命題,并判斷它們的真假。(1)1既是奇數(shù),又是素?cái)?shù);(2)2是素?cái)?shù)且3是素?cái)?shù);(3)22解略例3、判斷下列命題的真假;(1)6是自然數(shù)且是偶數(shù)(2)Æ是A的子集且是A的真子集;(3)集合A是AB的子集或是AB的子集;(4)周長(zhǎng)相等的兩個(gè)三角形全等或面積相等的兩個(gè)三角形全等解略6鞏固練習(xí) :2 練習(xí)第1 , 2題.教學(xué)反思:() 掌握邏輯聯(lián)結(jié)詞“或、且”的含義() 正確應(yīng)用邏輯聯(lián)結(jié)詞“或、且”解決問題() 掌握真值表并會(huì)應(yīng)用真值表解決問題pqPqPq真真真真真假假真假真假真假假假假作業(yè):P20:習(xí)題.組第1、2題非(一)教學(xué)目標(biāo)1.知識(shí)與技
34、能目標(biāo):(1)掌握邏輯聯(lián)結(jié)詞“非”的含義 (2)正確應(yīng)用邏輯聯(lián)結(jié)詞“非”解決問題(3)掌握真值表并會(huì)應(yīng)用真值表解決問題2過程與方法目標(biāo):觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維能力中嚴(yán)密性品質(zhì)的培養(yǎng)3.情感態(tài)度價(jià)值目標(biāo):激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神(二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“非”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容.難點(diǎn): 1、正確理解命題 “P”真假的規(guī)定和判定2、簡(jiǎn)潔、準(zhǔn)確地表述命題 “P”.教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積
35、極進(jìn)取的精神(三)教學(xué)過程學(xué)生探究過程:1、思考、分析問題1:下列各組命題中的兩個(gè)命題間有什么關(guān)系?(1) 35能被5整除; 35不能被5整除;(2) 方程x2+x+1=0有實(shí)數(shù)根。 方程x2+x+1=0無實(shí)數(shù)根。學(xué)生很容易看到,在每組命題中,命題是命題的否定。2、歸納定義一般地,對(duì)一個(gè)命題p全盤否定,就得到一個(gè)新命題,記作p讀作“非p”或“p的否定”。3、命題“p”與命題p的真假間的關(guān)系命題“p”與命題p的真假之間有什么聯(lián)系?引導(dǎo)學(xué)生分析前面所舉例子中命題p與命題p的真假性,概括出這兩個(gè)命題的真假之間的關(guān)系的一般規(guī)律。例如:在上面的例子中,第(1)組命題中,命題是真命題,而命題是假命題。第(
36、2)組命題中,命題是假命題,而命題是真命題。由此可以看出,既然命題P是命題P的否定,那么P與P不能同時(shí)為真命題,也不能同時(shí)為假命題,也就是說,若p是真命題,則p必是假命題;若p是假命題,則p必是真命題;pP真假假真4、命題的否定與否命題的區(qū)別讓學(xué)生思考:命題的否定與原命題的否命題有什么區(qū)別?命題的否定是否定命題的結(jié)論,而命題的否命題是對(duì)原命題的條件和結(jié)論同時(shí)進(jìn)行否定,因此在解題時(shí)應(yīng)分請(qǐng)命題的條件和結(jié)論。例:如果命題p:5是15的約數(shù),那么命題p:5不是15的約數(shù);p的否命題:若一個(gè)數(shù)不是5,則這個(gè)數(shù)不是15的約數(shù)。顯然,命題p為真命題,而命題p的否定p與否命題均為假命題。5.例題分析例1
37、60; 寫出下表中各給定語的否定語。若給定語為等于大于是都是至多有一個(gè)至少有一個(gè)其否定語分別為 分析:“等于”的否定語是“不等于”; “大于”的否定語是“小于或者等于”; “是”的否定語是“不是”; “都是”的否定語是“不都是”; “至多有一個(gè)”的否定語是“至少有兩個(gè)”; “至少有一個(gè)”的否定語是“一個(gè)都沒有”;例2:寫出下列
38、命題的否定,判斷下列命題的真假(1)p:y sinx 是周期函數(shù);(2)p:32;(3)p:空集是集合A的子集。解略.6.鞏固練習(xí):P20 練習(xí)第3題7教學(xué)反思:()正確理解命題 “P”真假的規(guī)定和判定()簡(jiǎn)潔、準(zhǔn)確地表述命題 “P”.作業(yè)P20:習(xí)題.組第3題14全稱量詞與存在量詞全稱量詞存在量詞(一)教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo)(1)通過生活和數(shù)學(xué)中的豐富實(shí)例理解全稱量詞與存在量詞的含義,熟悉常見的全稱量詞和存在量詞(2)了解含有量詞的全稱命題和特稱命題的含義,并能用數(shù)學(xué)符號(hào)表示含有量詞的命題及判斷其命題的真假性2.過程與方法目標(biāo) 使學(xué)生體會(huì)從具體到一般的認(rèn)知過程,培養(yǎng)學(xué)生抽象、概括的能力3
39、.情感態(tài)度價(jià)值觀通過學(xué)生的舉例,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的良好的思維品質(zhì),在練習(xí)過程中進(jìn)行辯證唯物主義思想教育(二)教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解全稱量詞與存在量詞的意義 難點(diǎn): 全稱命題和特稱命題真假的判定.教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神(三)教學(xué)過程學(xué)生探究過程:1思考、分析下列語句是命題嗎?假如是命題你能判斷它的真假嗎?(1)2x是整數(shù);(2) x;(3) 如果兩個(gè)三角形全等,那么它們的對(duì)應(yīng)邊相等;(4)平行于同一條直線的兩條直線互相平行;(5)海師附中今年所有高中一年級(jí)的學(xué)生數(shù)學(xué)課本都是采用人民教育
40、出版社A版的教科書;(6)所有有中國(guó)國(guó)籍的人都是黃種人;(7)對(duì)所有的x, x;(8)對(duì)任意一個(gè)x,2x是整數(shù)。1 推理、判斷(讓學(xué)生自己表述) (1)、(2)不能判斷真假,不是命題。 (3)、(4)是命題且是真命題。 (5)(8)如果是假,我們只要舉出一個(gè)反例就行。注:對(duì)于(5)(8)最好是引導(dǎo)學(xué)生將反例用命題的形式寫出來。因?yàn)檫@些命題的反例涉及到“存在量詞”“特稱命題”“全稱命題的否定”這些后續(xù)內(nèi)容。(5)的真假就看命題:海師附中今年存在個(gè)別(部分)高一學(xué)生數(shù)學(xué)課本不是采用人民教育出版社A版的教科書;這個(gè)命題的真假,該命題為真,所以命題(5)為假;命題(6)是假命題事實(shí)上,存在一個(gè)(個(gè)別、
41、部分)有中國(guó)國(guó)籍的人不是黃種人 命題(7)是假命題事實(shí)上,存在一個(gè)(個(gè)別、某些)實(shí)數(shù)(如x2), x(至少有一個(gè)x, x) 命題(8)是真命題。事實(shí)上不存在某個(gè)x,使2x不是整數(shù)。也可以說命題:存在某個(gè)x使2x不是整數(shù),是假命題 3發(fā)現(xiàn)、歸納命題(5)(8)跟命題(3)、(4)有些不同,它們用到 “所有的”“任意一個(gè)” 這樣的詞語,這些詞語一般在指定的范圍內(nèi)都表示整體或全部,這樣的詞叫做全稱量詞,用符號(hào)“"”表示,含有全稱量詞的命題,叫做全稱命題。命題(5)(8)都是全稱命題。 通常將含有變量x的語句用p(x),q(x),r(x),表示,變量x的取值范圍用M表示。那么全稱命題“對(duì)M中
42、任意一個(gè)x,有p(x)成立”可用符號(hào)簡(jiǎn)記為:"xÎM, p(x),讀做“對(duì)任意x屬于M,有p(x)成立”。 剛才在判斷命題(5)(8)的真假的時(shí)候,我們還得出這樣一些命題: (5),存在個(gè)別高一學(xué)生數(shù)學(xué)課本不是采用人民教育出版社A版的教科書; (6),存在一個(gè)(個(gè)別、部分)有中國(guó)國(guó)籍的人不是黃種人(7), 存在一個(gè)(個(gè)別、某些)實(shí)數(shù)x(如x2),使x(至少有一個(gè)x, x)(8),不存在某個(gè)x使2x不是整數(shù)這些命題用到了“存在一個(gè)”“至少有一個(gè)”這樣的詞語,這些詞語都是表示整體的一部分的詞叫做存在量詞。并用符號(hào)“”表示。含有存在量詞的命題叫做特稱命題(或存在命題)命題(5),
43、(8),都是特稱命題(存在命題)特稱命題:“存在M中一個(gè)x,使p(x)成立”可以用符號(hào)簡(jiǎn)記為:。讀做“存在一個(gè)x屬于M,使p(x)成立”全稱量詞相當(dāng)于日常語言中“凡”,“所有”,“一切”,“任意一個(gè)”等;存在量詞相當(dāng)于日常語言中“存在一個(gè)”,“有一個(gè)”,“有些”,“至少有一個(gè)”,“ 至多有一個(gè)”等. 4鞏固練習(xí)(1)下列全稱命題中,真命題是:A. 所有的素?cái)?shù)是奇數(shù); B. ;C. D.(2)下列特稱命題中,假命題是:A. B.至少有一個(gè)能被2和3整除C. 存在兩個(gè)相交平面垂直于同一直線 D.x2是有理數(shù)(3)已知:對(duì)恒成立,則a的取值范圍是 ;變式:已知:對(duì)恒成立,則a的取值范圍是 ;(4)求
44、函數(shù)的值域;變式:已知:對(duì)方程有解,求a的取值范圍5課外作業(yè)P29習(xí)題1.4A組1、2題:6教學(xué)反思:(1)判斷下列全稱命題的真假:末位是o的整數(shù),可以被5整除;線段的垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;負(fù)數(shù)的平方是正數(shù);梯形的對(duì)角線相等。(2)判斷下列特稱命題的真假:有些實(shí)數(shù)是無限不循環(huán)小數(shù);有些三角形不是等腰三角形;有些菱形是正方形。(3)探究:請(qǐng)課后探究命題(5),(8),跟命題(5)(8)分別有什么關(guān)系?請(qǐng)你自己寫出幾個(gè)全稱命題,并試著寫出它們的否命題寫出幾個(gè)特稱命題,并試著寫出它們的否命題。143含有一個(gè)量詞的命題的否定(一)教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo)(1)通過探究數(shù)學(xué)中一
45、些實(shí)例,使學(xué)生歸納總結(jié)出含有一個(gè)量詞的命題與它們的否定在形式上的變化規(guī)律(2)通過例題和習(xí)題的教學(xué),使學(xué)生能夠根據(jù)含有一個(gè)量詞的命題與它們的否定在形式上的變化規(guī)律,正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定2過程與方法目標(biāo) :使學(xué)生體會(huì)從具體到一般的認(rèn)知過程,培養(yǎng)學(xué)生抽象、概括的能力3.情感態(tài)度價(jià)值觀通過學(xué)生的舉例,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的良好的思維品質(zhì),在練習(xí)過程中進(jìn)行辯證唯物主義思想教育(二)教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):通過探究,了解含有一個(gè)量詞的命題與它們的否定在形式上的變化規(guī)律,會(huì)正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定教學(xué)難點(diǎn):正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。
46、教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神(三)教學(xué)過程學(xué)生探究過程:1回顧我們?cè)谏弦还?jié)中學(xué)習(xí)過邏輯聯(lián)結(jié)詞“非”對(duì)給定的命題p ,如何得到命題p 的否定(或非p ),它們的真假性之間有何聯(lián)系?2思考、分析判斷下列命題是全稱命題還是特稱命題,你能寫出下列命題的否定嗎?(1)所有的矩形都是平行四邊形;(2)每一個(gè)素?cái)?shù)都是奇數(shù);(3)"xR, x22x10。(4)有些實(shí)數(shù)的絕對(duì)值是正數(shù);(5)某些平行四邊形是菱形;(6)$ xR, x210。3推理、判斷你能發(fā)現(xiàn)這些命題和它們的否定在形式上有什么變化?(讓學(xué)生自己表述) 前三個(gè)命題都是全稱命題,即
47、具有形式“”。其中命題(1)的否定是“并非所有的矩形都是平行四邊形”,也就是說,存在一個(gè)矩形不都是平行四邊形;命題(2)的否定是“并非每一個(gè)素?cái)?shù)都是奇數(shù);”,也就是說,存在一個(gè)素?cái)?shù)不是奇數(shù);命題(3)的否定是“并非"xR, x22x10”,也就是說,$xR, x22x10; 后三個(gè)命題都是特稱命題,即具有形式“”。其中命題(4)的否定是“不存在一個(gè)實(shí)數(shù),它的絕對(duì)值是正數(shù)”,也就是說,所有實(shí)數(shù)的絕對(duì)值都不是正數(shù);命題(5)的否定是“沒有一個(gè)平行四邊形是菱形”,也就是說,每一個(gè)平行四邊形都不是菱形;命題(6)的否定是“不存在xR, x210”,也就是說,"xR, x210; 4
48、發(fā)現(xiàn)、歸納從命題的形式上看,前三個(gè)全稱命題的否定都變成了特稱命題。后三個(gè)特稱命題的否定都變成了全稱命題。一般地,對(duì)于含有一個(gè)量詞的全稱命題的否定,有下面的結(jié)論:全稱命題P:它的否定P 特稱命題P:它的否定P:"xM,P(x)全稱命題和否定是特稱命題。特稱命題的否定是全稱命題。5鞏固練習(xí)判斷下列命題是全稱命題還是特稱命題,并寫出它們的否定:() p:所有能被3整除的整數(shù)都是奇數(shù);() p:每一個(gè)四邊形的四個(gè)頂點(diǎn)共圓;() p:對(duì)"xZ,x2個(gè)位數(shù)字不等于3;() p:$ xR, x22x20;() p:有的三角形是等邊三角形;() p:有一個(gè)素?cái)?shù)含三個(gè)正因數(shù)。6教學(xué)反思與作業(yè)
49、(1)教學(xué)反思:如何寫出含有一個(gè)量詞的命題的否定,原先的命題與它的否定在形式上有什么變化?(2)作業(yè):P29習(xí)題1.4A組第3題:B組(1)(2)(3)(4)第二章 圓錐曲線與方程2.1曲線與方程曲線與方程求曲線的軌跡方程一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法(二)能力訓(xùn)練點(diǎn)通過對(duì)求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力(三)學(xué)科滲透點(diǎn)通過對(duì)求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實(shí)的基礎(chǔ)二、教材分析1重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法(解決辦法:對(duì)每種方法用例題加以說
50、明,使學(xué)生掌握這種方法)2難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法(解決辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路,再用例題進(jìn)行講解)教具準(zhǔn)備:與教材內(nèi)容相關(guān)的資料。教學(xué)設(shè)想:激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神三、教學(xué)過程學(xué)生探究過程:(一)復(fù)習(xí)引入大家知道,平面解析幾何研究的主要問題是:(1)根據(jù)已知條件,求出表示平面曲線的方程;(2)通過方程,研究平面曲線的性質(zhì)我們已經(jīng)對(duì)常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對(duì)根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析(二)幾種常見求軌跡方程的方法1直接法由題設(shè)所給(或通
51、過分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡(jiǎn)得曲線的方程,這種方法叫直接法例1(1)求和定圓x2+y2=k2的圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程;(2)過點(diǎn)A(a,o)作圓Ox2+y2=R2(aRo)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡對(duì)(1)分析:動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0即x2+y2=4R2或x2+y2=0故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0對(duì)(2)分析:題設(shè)中沒有具體給出動(dòng)點(diǎn)所滿足的幾何條件,但可
52、以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒數(shù)由學(xué)生演板完成,解答為:設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OMAMkOM·kAM=-1,其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點(diǎn))2定義法利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件直平分線l交半徑OQ于點(diǎn)P(見圖245),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程分析:點(diǎn)P在AQ的垂直平分線上,|PQ|=|PA|又P在半徑OQ上|PO|+|PQ|=R,即|PO|+|PA|=R故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義寫出P點(diǎn)的軌跡方程解:連接PA lPQ,|PA|=|PQ|又P在半徑OQ上|PO|+|PQ|=2由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓3相關(guān)點(diǎn)法若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二次根式混合運(yùn)算125題(含答案)
- 2025年北京中考語文作文-解析與范文
- 經(jīng)營(yíng)管理權(quán)轉(zhuǎn)讓協(xié)議范文
- 三位數(shù)除以兩位數(shù)能力自測(cè)模擬題帶答案
- 二年級(jí)數(shù)學(xué)100以內(nèi)加減法豎式計(jì)算題單元測(cè)試?yán)}帶答案
- 城市雨水排放合同管理指南
- 語文課件《斜塔上的實(shí)驗(yàn)》
- 化工設(shè)計(jì)課件化工過程開發(fā)的實(shí)驗(yàn)室工作
- 《EMI安規(guī)詳解》課件
- 【課件】幫助孩子提高學(xué)習(xí)成績(jī)的藝術(shù)
- 生涯發(fā)展展示
- 國(guó)內(nèi)民用船舶修理價(jià)格表
- 江蘇鹽城東臺(tái)市小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)期末測(cè)試卷含答案
- CNC工藝簡(jiǎn)介課件
- 海外安全培訓(xùn)課件
- 江蘇省蘇州市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標(biāo)調(diào)研語文試卷
- 大學(xué)軍事理論課教程第三章軍事思想第四節(jié)當(dāng)代中國(guó)軍事思想
- 開展學(xué)科周活動(dòng)方案
- 報(bào)價(jià)單(報(bào)價(jià)單模板)
- 園林景觀給排水設(shè)計(jì)匯總計(jì)算書
- 《電線電纜常用計(jì)算公式》
評(píng)論
0/150
提交評(píng)論