




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Chp.4 The Discount FactorMain ContentsnThe Relationship between Law of One Price and Existence of Discount Factor;nThe Relationship Between No Arbitrage and Existence of Positive Discount Factor;nAn Alternative Formula to Compute the Discount Factor in Discrete and Continuous Time.4.1 law of one pri
2、ce and Existence of a Discount factor AssumptionsnA1:(Portfolio formation): for any real a,b.nRemark: Its an important and restrictive simplifying assumption. short sales constraints, leverage limitations, and so on.nA2:(Law of one price,Linearity): nRemark: if the payoff of asset A is the same as t
3、hat of asset B in any case, then price of A=price of B. happy meal theorem. It rules out bid/ask spreads.不考慮流動(dòng)性。1212,x xXaxbxX1212()()()p axbxap xbp xTheorem 1nGiven free portfolio formation A1, and the law of one price A2, there exists a unique payoff such that p(x)=E(x*x) for all .xX*xXGeometric P
4、roof 1n一價(jià)定律線性價(jià)格函數(shù)。n線性價(jià)格函數(shù) 等價(jià)線如下圖所示。假設(shè)支付空間是二維的。n根據(jù)p0等價(jià)線可知x*與之正交。(存在)(注意我們定義 ,因此求內(nèi)積時(shí)要乘以概率 )n Price=2 n n Price=1(return) n x*n Price=0(excess return)x1x2()E XYX YGeometric Proof 2n用x*為p=1等價(jià)線上的任一證券X1定價(jià)可確定X*的長度。即:n給定任意證券X2,將它與0連線(或延長線),與p1等價(jià)線相交于X1。即x2=ax1.從圖上可以看出,用x*定價(jià)可得p(x2)=ap(x1),符合一價(jià)定律。*11()11/()pro
5、j x xxxproj x x Algebraic Proof nSuppose the basis payoffs (after pruning redundant rows of x) nThen we want to find a discount factor x* in payoff space,so it must be of the formn對(duì)于任意的證券組合ax,我們用x*來定價(jià)得:n由于x*對(duì)于任意證券都一樣,因此是唯一的。12,.,Nxx xx*xc x1*1()()()()()()p a xEc xa xc aE x xp a xcE xxpa pE x x cxp E
6、xxpx由一價(jià)定律可知Other discount factorsnThe discount factor in payoff space X is unique.nThere are many other discount factors m not in X. (unless the market is complete).nIf p=E(mx),then p=E(m+e)xfor any e orthogonal to x,E(ex)=0.nAny discount factor m can be represented as m=x*+e,with E(ex)=0.nThe prici
7、ng implication of any discount factor m for a set of payoff X are the same as those of projection m on X.n is called the mimicking portfolio for m.()(|) (|) pE mxEproj m XxE proj m X x( | )proj m XTheorem 2nThe existence of a discount factor implies the law of one pricenProof: if x+y=z,and there is
8、a discount factor, then p(x+y)=E(m(x+y)=E(mz)=p(z)4.2 No Arbitrage and Positive Discount FactorsDefinition: No arbitrage nD1:Every payoff x that is always nonnegative (almost surely), and positive with some positive probability, has positive price.nD2:If x=y almost surely and xy with positive probab
9、ility, then p(x)p(y).Theorem3: m0 imply No arbitrage nProof:qFor X=0 and in some states x0. qBecause m0(positive in every state).qP=E(mx)0Theorem4:No arbitrage implies a m0n證明:由于無套利蘊(yùn)含著一價(jià)定律,也就意味著存在隨機(jī)折現(xiàn)因子,故僅需證明m為正的。n聯(lián)合(-p(x),x) 形成s+1維空間 中的向量。令M表示所有的數(shù)對(duì)(-p(x),x) 構(gòu)成的集合。n由一價(jià)定律,M仍是一個(gè)線性空間。n無套利意味著M的元素( s+1維向
10、量)不能夠全部由正的分量組成。如果x是正的,那么- p(x),一定為負(fù)(無套利保證的)。這樣,超平面M就與正的向量空間 只相交于原點(diǎn)。1sR1sR( ), );Mp x x xXn這樣就存在一個(gè)函數(shù)F: 使得對(duì)于(-p(x),x) M的點(diǎn) F(-p,x)=0 ,并且 除原點(diǎn)外的(-p(x),x) 的點(diǎn)F(-p,x)0 (由超平面分離定理保證的)。n由于可以采用向量的內(nèi)積來表示任何的線性函數(shù),并且存在向量(1,m)使得n由于對(duì)所有(-p(x),x) 0的點(diǎn)F(-p,x)都是正的,所以m必須是正的。n在連續(xù)的情況下,可以由凸集分離定理和Riesz表示定理同樣得到結(jié)論。(, )(1,) (, )()
11、Fp xmp xpm xorpE mx 1sRR1sROther discount factorsnThe theorem says that a positive m exists, but it does not say every m must be positive.nIn incomplete market, even x* need not be positive.Xm0X*Arbitrage-free extension of pricesnEach particular choice of m0 induces an arbitrage-free extension of pr
12、ices on X to all contingent claims. An observed and incomplete set of prices and payoffs can be generated by some complete market and contingent-claims economies if there is no arbitrage.X* mp=1p=2oABX由于Ox*m與OBA相似,所以x*OA=OBmNo arbitrage and the law of one pricenNo arbitrage is more strict than the l
13、aw of one price.nNo arbitrage implies the law of one price, but not vice versa.Why no arbitrage is more strict than law of one price?nLaw of one price implies the same payoff has the same price, but does not consider the situation of different payoffs. For example, if payoff Apayoff B in any case, u
14、nder the law of one price, p(A)p(B) may hold. This implies arbitrage opportunity.nNo arbitrage implies positive payoff has positive price, which includes the law of one price.4.3 an alternative formula, and x* in continuous timeAlternative fromulan n Proof:)()()()(1*xExxExEpxEx*1*1*1() ( ) ( ) ( )(
15、) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )E xxE E xp E x E xx E x xE x E xp E x E xE x E x xE x E xp E x E xp Alternative formula(2)nIf a risk-free rate is traded, then we have:*111()();cov()eeeeffxE RRE RRRR X* in continuous timenSimilarly, we can getnProof: *1*()ffdDr dtrdzp*11,()(),(/),(/) ,(/) (/)ftff
16、tffffdpddtdzr dtdzpdpDDddpEdtr dtr dtEdtppppD prD prD prD pr 假設(shè):Other discount factors in continuous timen plus orthogonal noise will also act as a discount factor:*;()0;()0.dddw E dwE dzdw重要結(jié)論(1)n在完全市場中,m只有一個(gè),且嚴(yán)格為正。n在不完全市場中,即使處于無套利均衡狀態(tài),m很多,其中有的m可能完全為負(fù),但肯定有的m完全為正。n在不完全市場中,新產(chǎn)品(只要不是原有產(chǎn)品的線性復(fù)制品)可以使市場趨于完全。但若沒有其他信息,該產(chǎn)品就無法準(zhǔn)確定價(jià),但可以確定價(jià)格
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年03月江西吉安市吉州區(qū)工業(yè)園區(qū)管委會(huì)面向社會(huì)公開招聘編外人員1人筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 2025年03月吉林省農(nóng)業(yè)科學(xué)院編外勞務(wù)派遣人員(1號(hào))(5人)筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 花草種項(xiàng)目風(fēng)險(xiǎn)評(píng)估報(bào)告
- 中級(jí)電子商務(wù)設(shè)計(jì)師-《電子商務(wù)設(shè)計(jì)師》押題密卷2
- 內(nèi)蒙古阿榮旗第五區(qū)域聯(lián)合體2025屆五下數(shù)學(xué)期末檢測試題含答案
- 廣西城市職業(yè)大學(xué)《園林景觀設(shè)計(jì)初步》2023-2024學(xué)年第二學(xué)期期末試卷
- 淮北職業(yè)技術(shù)學(xué)院《電力系統(tǒng)基礎(chǔ)(英語)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川民族學(xué)院《數(shù)據(jù)結(jié)構(gòu)及算法(Python)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶智能工程職業(yè)學(xué)院《水工程監(jiān)理》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東省巨野縣第一中學(xué)2025屆全國高三沖刺考(四)全國I卷歷史試題含解析
- 北京理工大學(xué)《操作系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 甜品臺(tái)合同范例
- 2024年水池承包合同
- 《田忌賽馬》公開課一等獎(jiǎng)創(chuàng)新教案
- 報(bào)銷合同范本模板
- 學(xué)位英語4000詞(開放大學(xué))
- 2024年西北民族大學(xué)專職輔導(dǎo)員招聘10人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 【中職專用】備戰(zhàn)中職高考數(shù)學(xué)沖刺模擬卷六答案
- 搬運(yùn)裝卸服務(wù)外包投標(biāo)方案(技術(shù)標(biāo))
- DB34T 4827-2024 低溫環(huán)保瀝青路面技術(shù)規(guī)程
- 2024年九年級(jí)中考語文課外文言文閱讀題匯集(一)附答案解析
評(píng)論
0/150
提交評(píng)論