版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換l1. 引言,定義引言,定義 調(diào)諧信號與復(fù)信號分析調(diào)諧信號與復(fù)信號分析 若干有用函數(shù)若干有用函數(shù)l2. 卷積卷積 卷積濾波卷積濾波l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l線性移不變性:線性移不變性:當(dāng)線性系統(tǒng)的輸入是兩信號之和時,其輸出等于兩輸入信號單獨(dú)作用時輸出的和;當(dāng)線性系統(tǒng)的輸入是兩信號之和時,其輸出等于兩輸入信號單獨(dú)作用時輸出的和;對于移不變系統(tǒng),改變輸入信號的時空原點只導(dǎo)致輸出信號作同樣的平移)對于移不變
2、系統(tǒng),改變輸入信號的時空原點只導(dǎo)致輸出信號作同樣的平移)l調(diào)諧信號調(diào)諧信號和響應(yīng):和響應(yīng):由于調(diào)諧信號能簡化線性系統(tǒng)分析,故常用它來表示正弦信號由于調(diào)諧信號能簡化線性系統(tǒng)分析,故常用它來表示正弦信號 。l傳遞函數(shù)傳遞函數(shù) :線性移不變系統(tǒng)的性能可用其傳遞函數(shù)完全刻畫;傳遞函數(shù)是以頻率為自變量的復(fù)值函線性移不變系統(tǒng)的性能可用其傳遞函數(shù)完全刻畫;傳遞函數(shù)是以頻率為自變量的復(fù)值函數(shù),它反映了調(diào)諧信號輸入與輸出之間的幅度和相位的關(guān)系;對線性移不變系統(tǒng),調(diào)諧數(shù),它反映了調(diào)諧信號輸入與輸出之間的幅度和相位的關(guān)系;對線性移不變系統(tǒng),調(diào)諧信號輸入乘以對應(yīng)于輸入信號頻率的傳遞函數(shù)就得到系統(tǒng)的輸出信號輸入乘以對應(yīng)
3、于輸入信號頻率的傳遞函數(shù)就得到系統(tǒng)的輸出 l常用函數(shù):常用函數(shù):矩形脈沖,三角函數(shù),階躍函數(shù),高斯函數(shù),沖激函數(shù),矩形脈沖,三角函數(shù),階躍函數(shù),高斯函數(shù),沖激函數(shù),傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l卷積模型的引入:與沖激響應(yīng)的卷積;描述有限點采樣卷積模型的引入:與沖激響應(yīng)的卷積;描述有限點采樣l計算:計算:l卷積的應(yīng)用:去卷積(圖像成像及退化模型)卷積的應(yīng)用:去卷積(圖像成像及退化模型),去噪聲,增強(qiáng),去噪聲,增強(qiáng)l卷積濾波:平滑,邊緣增強(qiáng),去卷積卷積濾波:平滑,邊緣增強(qiáng),去卷積),(),(),(njmiGnmFjiHMatlab程序:卷積去噪:l一線性系統(tǒng)理論一線性系統(tǒng)理論l
4、二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換l1. 引言,定義引言,定義 調(diào)諧信號與復(fù)信號分析調(diào)諧信號與復(fù)信號分析 若干有用函數(shù)若干有用函數(shù)l2. 卷積卷積 卷積濾波卷積濾波l1. 定義定義l 傅立葉變換的性質(zhì)傅立葉變換的性質(zhì)l 二維傅立葉變換二維傅立葉變換l2. 傅立葉變換的分析傅立葉變換的分析l3. 線性系統(tǒng)和傅立葉變換線性系統(tǒng)和傅立葉變換l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)dsesFsFstj2)()(1021NnnNijinefNF1010)(2),(1),(NiNkNknNim
5、jekigNnmG傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)Matlab程序:傅立葉變換:傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l同一維傅立葉變換相同的性質(zhì)同一維傅立葉變換相同的性質(zhì)l旋轉(zhuǎn)性:旋轉(zhuǎn)性: f(x,y)在與在與x軸成某一角度的直線上的投影的傅立葉變換正好等于軸成某一角度的直線上的投影的傅立葉變換正好等于F(u,v)沿該角度的指向上的取值。沿該角度的指向上的取值。l投影性:投影性: f(x,y)在在x軸上投影的變換即是軸上投影的變換即是F(u,v)在在u軸上的取值。軸上的取值。傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l1 1、計算卷積的工具、計算卷積的工具l2
6、 2、逐步細(xì)化分解的逼近算法,最小均方誤差條件下誤差最小。逐步細(xì)化分解的逼近算法,最小均方誤差條件下誤差最小。傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l3 3、正交完備集合上的投影,、正交完備集合上的投影,去除高階相關(guān)性:去除高階相關(guān)性: 可以讓各種互不相關(guān)的特征分開排放,有利于辨別、提取、可以讓各種互不相關(guān)的特征分開排放,有利于辨別、提取、去除。去除。 映射到正交完備集合上的系數(shù)表達(dá)的平方和是最小的。映射到正交完備集合上的系數(shù)表達(dá)的平方和是最小的。 去高階相關(guān),相關(guān)由于自然界信號的特性,變化后熵值變小。去高階相關(guān),相關(guān)由于自然界信號的特性,變化后熵值變小。傅氏變換傅氏變換離散變換離散
7、變換線性系統(tǒng)線性系統(tǒng)l4 4、時間上不具有局部性,是一種全局分析時間上不具有局部性,是一種全局分析 功率譜分析:積分關(guān)系對計算隨機(jī)信號全局信息的意義。功率譜分析:積分關(guān)系對計算隨機(jī)信號全局信息的意義。 二維傅立葉變換用于重建也是一種積分關(guān)系的利用。二維傅立葉變換用于重建也是一種積分關(guān)系的利用。l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換l1. 引言,定義引言,定義l 傅立葉變換的性質(zhì)傅立葉變換的性質(zhì)l 二維傅立葉變換二維傅立葉變換l2. 線性系統(tǒng)和傅立葉變換線性系統(tǒng)和傅立葉變換l 相關(guān)和能量譜相關(guān)和能量譜l3. 傅立葉變換的分析傅立葉變換的分析l1.
8、引言引言l2. 線性變換,線性變換, 基函數(shù)基圖象基函數(shù)基圖象l3. 正弦型變換正弦型變換l4. 方波型變換方波型變換l5. 基于特征向量的變換基于特征向量的變換l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散圖象變換三離散圖象變換傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l1:一維離散線性變換:一維離散線性變換:l2 2:二維離散線性變換:二維離散線性變換l3 3:基函數(shù)和基圖象基函數(shù)和基圖象 傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l1:離散傅立葉變換離散傅立葉變換l2 2:離散余弦變換:離散余弦變換l3 3:正弦變換正弦變換l4:哈特利變換哈特利變換 l5:其他的正弦型變換其他的正弦型變換 1, 10, 11, 00, 0.NNNNwwwwWNikjkieNw2,1傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l1:哈達(dá)瑪變換哈達(dá)瑪變換l2 2:離散余弦變換:離散余弦變換l3 3:正弦變換正弦變換l4:哈特利變換哈特利變換 傅氏變換傅氏變換離散變換離散變換線性系統(tǒng)線性系統(tǒng)l1:特征分析特征分析 l2:主分量分析(主分量分析(PCA) l3:KL變換變換 l4:SVD變換變換 l一線性系統(tǒng)理論一線性系統(tǒng)理論l二傅立葉變換二傅立葉變換l三離散
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年蓄水池施工勞務(wù)合同范本
- 廢紙采購合同2024年
- 工業(yè)商品交易合同范例
- 房屋買賣合同協(xié)議書撰寫指南
- 2024年門衛(wèi)值班人員聘用合同協(xié)議
- 個人借款延期還款協(xié)議書范例
- 工廠土地轉(zhuǎn)讓合同樣本
- 產(chǎn)品加工項目合作協(xié)議書范本
- 2024年勞務(wù)合同與勞務(wù)協(xié)議書
- 合同范本編寫指南
- 2024城市公共設(shè)施適老化設(shè)施服務(wù)要求與評價
- 專題05 狼(含答案與解析)-備戰(zhàn)2024年中考語文之文言文對比閱讀(全國版)
- 小學(xué)語文分層作業(yè)設(shè)計案例一等獎
- 2023年10月云南昆明市西山區(qū)碧雞街道社區(qū)青年人才招考筆試歷年典型考題及考點剖析附答案詳解
- 中等職業(yè)學(xué)?!禖AD制圖》課程標(biāo)準(zhǔn)
- 2023-2024學(xué)年全國初中八年級上語文人教版期中考卷(含答案解析)
- 中國心力衰竭基層診療與管理指南(實踐版2024)解讀
- JT-T-325-2018營運(yùn)客運(yùn)類型劃分及等級評定
- TD/T 1012-2016 土地整治項目規(guī)劃設(shè)計規(guī)范(正式版)
- GB/T 43922-2024在役聚乙烯燃?xì)夤艿罊z驗與評價
- DZ∕T 0273-2015 地質(zhì)資料匯交規(guī)范(正式版)
評論
0/150
提交評論