


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2.2 橢 圓2.2.1橢圓及其標(biāo)準(zhǔn)方程 知識與技能目標(biāo)理解橢圓的概念,掌握橢圓的定義、會用橢圓的定義解決實際問題;理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程及化簡無理方程的常用的方法;了解求橢圓的動點的伴隨點的軌跡方程的一般方法 過程與方法目標(biāo)(1)預(yù)習(xí)與引入過程當(dāng)變化的平面與圓錐軸所成的角在變化時,觀察平面截圓錐的截口曲線(截面與圓錐側(cè)面的交線)是什么圖形?又是怎么樣變化的?特別是當(dāng)截面不與圓錐的軸線或圓錐的母線平行時,截口曲線是橢圓,再觀察或操作了課件后,提出兩個問題:第一、你能理解為什么把圓、橢圓、雙曲線和拋物線叫做圓錐曲線;第二、你能舉出現(xiàn)實生活中圓錐曲線的例子當(dāng)學(xué)生把上述兩個問題回答清楚后,要引導(dǎo)
2、學(xué)生一起探究P41頁上的問題(同桌的兩位同學(xué)準(zhǔn)備無彈性的細繩子一條(約10cm長,兩端各結(jié)一個套),教師準(zhǔn)備無彈性細繩子一條(約60cm,一端結(jié)個套,另一端是活動的),圖釘兩個)當(dāng)套上鉛筆,拉緊繩子,移動筆尖,畫出的圖形是橢圓啟發(fā)性提問:在這一過程中,你能說出移動的筆?。▌狱c)滿足的幾何條件是什么?板書211橢圓及其標(biāo)準(zhǔn)方程(2)新課講授過程(i)由上述探究過程容易得到橢圓的定義板書把平面內(nèi)與兩個定點,的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓(ellipse)其中這兩個定點叫做橢圓的焦點,兩定點間的距離叫做橢圓的焦距即當(dāng)動點設(shè)為時,橢圓即為點集(ii)橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程提問:已知圖形,
3、建立直角坐標(biāo)系的一般性要求是什么?第一、充分利用圖形的對稱性;第二、注意圖形的特殊性和一般性關(guān)系 無理方程的化簡過程是教學(xué)的難點,注意無理方程的兩次移項、平方整理 設(shè)參量的意義:第一、便于寫出橢圓的標(biāo)準(zhǔn)方程;第二、的關(guān)系有明顯的幾何意義 類比:寫出焦點在軸上,中心在原點的橢圓的標(biāo)準(zhǔn)方程(iii)例題講解與引申例1 已知橢圓兩個焦點的坐標(biāo)分別是,并且經(jīng)過點,求它的標(biāo)準(zhǔn)方程分析:由橢圓的標(biāo)準(zhǔn)方程的定義及給出的條件,容易求出引導(dǎo)學(xué)生用其他方法來解另解:設(shè)橢圓的標(biāo)準(zhǔn)方程為,因點在橢圓上,則例2 如圖,在圓上任取一點,過點作軸的垂線段,為垂足當(dāng)點在圓上運動時,線段的中點的軌跡是什么?分析:點在圓上運動,
4、由點移動引起點的運動,則稱點是點的伴隨點,因點為線段的中點,則點的坐標(biāo)可由點來表示,從而能求點的軌跡方程引申:設(shè)定點,是橢圓上動點,求線段中點的軌跡方程解法剖析:(代入法求伴隨軌跡)設(shè),;(點與伴隨點的關(guān)系)為線段的中點,;(代入已知軌跡求出伴隨軌跡),點的軌跡方程為;伴隨軌跡表示的范圍例3如圖,設(shè),的坐標(biāo)分別為,直線,相交于點,且它們的斜率之積為,求點的軌跡方程分析:若設(shè)點,則直線,的斜率就可以用含的式子表示,由于直線,的斜率之積是,因此,可以求出之間的關(guān)系式,即得到點的軌跡方程解法剖析:設(shè)點,則,;代入點的集合有,化簡即可得點的軌跡方程引申:如圖,設(shè)的兩個頂點,頂點在移動,且,且,試求動點
5、的軌跡方程引申目的有兩點:讓學(xué)生明白題目涉及問題的一般情形;當(dāng)值在變化時,線段的角色也是從橢圓的長軸圓的直徑橢圓的短軸 情感、態(tài)度與價值觀目標(biāo)通過作圖展示與操作,必須讓學(xué)生認同:圓、橢圓、雙曲線和拋物線都是圓錐曲線,是因它們都是平面與圓錐曲面相截而得其名;必須讓學(xué)生認同與體會:橢圓的定義及特殊情形當(dāng)常數(shù)等于兩定點間距離時,軌跡是線段;必須讓學(xué)生認同與理解:已知幾何圖形建立直角坐標(biāo)系的兩個原則,及引入?yún)⒘康囊饬x,培養(yǎng)學(xué)生用對稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美;讓學(xué)生認同與領(lǐng)悟:例1使用定義解題是首選的,但也可以用其他方法來解,培養(yǎng)學(xué)生從定義的角度思考問題的好習(xí)慣;例2是典型的用代入法求動點的伴隨點的
6、軌跡,培養(yǎng)學(xué)生的辯證思維方法,會用分析、聯(lián)系的觀點解決問題;通過例3培養(yǎng)學(xué)生的對問題引申、分段討論的思維品質(zhì)能力目標(biāo)(1) 想象與歸納能力:能根據(jù)課程的內(nèi)容能想象日常生活中哪些是橢圓、雙曲線和拋物線的實際例子,能用數(shù)學(xué)符號或自然語言的描述橢圓的定義,能正確且直觀地繪作圖形,反過來根據(jù)圖形能用數(shù)學(xué)術(shù)語和數(shù)學(xué)符號表示(2) 思維能力:會把幾何問題化歸成代數(shù)問題來分析,反過來會把代數(shù)問題轉(zhuǎn)化為幾何問題來思考,培養(yǎng)學(xué)生的數(shù)形結(jié)合的思想方法;培養(yǎng)學(xué)生的會從特殊性問題引申到一般性來研究,培養(yǎng)學(xué)生的辯證思維能力(3) 實踐能力:培養(yǎng)學(xué)生實際動手能力,綜合利用已有的知識能力(4) 數(shù)學(xué)活動能力:培養(yǎng)學(xué)生觀察、實驗
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國電磁門吸行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國工業(yè)橡膠帆布行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國2.4二氨基苯磺酸鈉行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國靜電噴漆噴粉主機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國防水漿料數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國藥用沙棘油數(shù)據(jù)監(jiān)測研究報告
- 湖州商場暖通工程施工方案
- 2025至2030年中國環(huán)型燈盤數(shù)據(jù)監(jiān)測研究報告
- 四川新建鋼煙囪施工方案
- 2025至2030年中國雙爐數(shù)據(jù)監(jiān)測研究報告
- 2025年江蘇省高職單招《職測》高頻必練考試題庫400題(含答案)
- 工廠安全事故預(yù)防知識
- 2024年中考語文試題分類匯編:散文、小說閱讀(第03期)含答案及解析
- 《宮頸癌篩查》課件
- 2024年江西應(yīng)用工程職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2024年中儲糧油脂有限公司招聘筆試真題
- 消化科護理疑難病例討論
- 中醫(yī)護理技術(shù)操作質(zhì)量控制
- 杭氧股份深度報告:工業(yè)氣體龍頭期待2025景氣復(fù)蘇
- 2024年學(xué)校意識形態(tài)工作總結(jié)
- 2024年聯(lián)勤保障部隊第九四〇醫(yī)院社會招聘考試真題
評論
0/150
提交評論