版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、數(shù)列知識點(diǎn)及常用結(jié)論一、等差數(shù)列(1)等差數(shù)列的基本公式通項公式: (從第1項開始為等差) (從第m項開始為等差) 前項和公式:(2)證明等差數(shù)列的法方定義法:對任意的n,都有(d為常數(shù))為等差數(shù)列等差中項法:(n)為等差數(shù)列通項公式法:=pn+q (p,q為常數(shù)且p0) 為等差數(shù)列 即:通項公式位n的一次函數(shù),公差,首項前項和公式法: (p, q為常數(shù)) 為等差數(shù)列 即:關(guān)于n的不含常數(shù)項的二次函數(shù)(3)常用結(jié)論若數(shù)列,為等差數(shù)列,則數(shù)列,(k, b為非零常數(shù))均為等差數(shù)列.若m+n=p+q (m,n,p,q),則=.特別的,當(dāng)n+m=2k時,得=在等差數(shù)列中,每隔k(k)項取出一項,按原來
2、的順序排列,所得的數(shù)列仍為等差數(shù)列,且公差為(k+1)d(例如:,仍為公差為3d的等差數(shù)列)若數(shù)列為等差數(shù)列,則記,則,仍成等差數(shù)列,且公差為d若為等差數(shù)列的前n項和,則數(shù)列也為等差數(shù)列. 此性質(zhì)對任何一種數(shù)列都適用求最值的方法:I: 若>0,公差d<0,則當(dāng)時,則有最大值,且最大; 若<0,公差d>0,則當(dāng)時,則有最小值,且最??;II:求前項和的對稱軸,再求出距離對稱軸最近的正整數(shù),當(dāng) 時,為最值,是最大或最小,通過的開口來判斷。二、等比數(shù)列(1)等比數(shù)列的基本公式通項公式: (從第1項開始為等比) (從第m項開始為等差)前項和公式:,(2)證明等比數(shù)列的法方定義法:
3、對任意的n,都有(q0) 為等比數(shù)列等比中項法:(0)為等比數(shù)列通項公式法:為等比數(shù)列(3)常用結(jié)論若數(shù)列,為等比數(shù)列,則數(shù)列, (k為非零常數(shù)) 均為等比數(shù)列.若m+n=p+q (m, n, p, q),則=.特別的,當(dāng)n+m=2k時,得=在等比數(shù)列中,每隔k(k)項取出一項,按原來的順序排列,所得的數(shù)列仍為等比數(shù)列,且公比為 (例如:,仍為公比的等比數(shù)列)若數(shù)列為等差數(shù)列,則記,則,仍成等比數(shù)列,且公差為三、求任意數(shù)列通項公式的方法(1)累加法:若滿足an+1=an+f(n)利用累加法求:例題:若,且,求:練習(xí)題:若數(shù)列滿足,且(2)累乘法:若滿足利用累乘法求: 例題:在數(shù)列an中,求:.
4、練習(xí)題:在數(shù)列an中,且,求: (提示:)(3)遞推公式中既有,又有,用逐差法 特別注意:該公式對一切數(shù)列都成立。(4)若滿足,則兩邊加:,在提公因式P,構(gòu)造出一個等比數(shù)列,再出求:例題:已知數(shù)列,滿足:,且,求:習(xí)題1:已知數(shù)列滿足:且,求:習(xí)題2:已知數(shù)列滿足:,且,求:(5)若滿足,則兩邊同時除以:,構(gòu)造出一個等差數(shù)列,再求出:例題:已知滿足:,求: 解:,既有: 所以:是首項為:,公差的等差數(shù)列 所以:習(xí)題1:已知且,求:習(xí)題2:已知且,求:(六)待定系數(shù)法:若滿足以下關(guān)系: 都可用待定系數(shù)法轉(zhuǎn)變成一個等比數(shù)列來:溫馨提示:提,對待定系數(shù)例題1:已知數(shù)列滿足,求數(shù)列的通項公式. 解:,
5、與原式對應(yīng)得, 所以:是首項,公比的等比數(shù)列 既有:例題2:已知數(shù)列滿足,求數(shù)列的通項公式. 解:,與原式對應(yīng)得: 所以:是首項為:,公比的等比數(shù)列既有:(七)顛倒法:若滿足:,用顛倒法; 所以:,所以:是以首項為:,公差的等差數(shù)列例題1:已知,且,求:例題2:已知,且,求:(八)倒數(shù)換元法:若數(shù)列滿足:,則顛倒變成然后再用兩邊加:或者待定系數(shù)法既可求出,再顛倒就可得到:例題:若數(shù)列滿足:,且,求:解:,兩邊加:1得: ,所以:是首項為:,公比:的等比數(shù)列;既有:若用待定系數(shù)法: 與原式子對應(yīng)得,然后的方法同上;習(xí)題:已知且,求:四、求前n項和Sn的方法(1)錯位相減求和 主要適用于等差數(shù)列和等比數(shù)列乘積的數(shù)列的前n項和;或者是等差與等比的商的前n項和;(是商的時候,適當(dāng)轉(zhuǎn)變一下就變成了乘積形式)。既:設(shè)為等差數(shù)列,為等比數(shù)列,求:或的前n項和常用此方法(都轉(zhuǎn)變?yōu)槌朔e形式)例題1:已知數(shù)列,數(shù)列的前項和,求數(shù)列的前項和例題2:求數(shù)列的的前項和習(xí)題1:求:習(xí)題2:設(shè)數(shù)列,求的前n項和(2)裂項相消求和 適用于的形式,變形為:例題:求數(shù)列的前n項和習(xí)題1:求數(shù)列的前n項和 習(xí)題2:求數(shù)列的前n項和.(3)、分組法求和:有些數(shù)列是和可以分成幾部分分開求,在進(jìn)行加減;例題:求的前和?習(xí)題1:已知是一個遞增的等差數(shù)列且,前n項和為數(shù)列的前n項和為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度股權(quán)質(zhì)押資產(chǎn)重組合同示范文本3篇
- 二零二五年度鋼材倉儲物流服務(wù)合同9篇
- 二零二五年度路燈照明設(shè)施安全檢測合同樣本2篇
- 二零二五年度:勞動合同法實務(wù)操作與案例分析合同3篇
- 二零二五年度船舶建造與設(shè)備安裝合同2篇
- 二零二五年度農(nóng)產(chǎn)品質(zhì)量檢測合同范本3篇
- 二零二五年度安置房買賣合同電子支付與結(jié)算規(guī)范3篇
- 3、2025年度綠色出行接送機(jī)服務(wù)合同范本2篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)合作開發(fā)合同范本3篇
- 家里陪護(hù)合同(2篇)
- 2024-2025學(xué)年五年級科學(xué)上冊第二單元《地球表面的變化》測試卷(教科版)
- 小區(qū)物業(yè)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測分析研究報告
- 2025屆高考數(shù)學(xué)一輪復(fù)習(xí)建議-函數(shù)與導(dǎo)數(shù)專題講座課件
- 心電圖基本知識
- 中煤電力有限公司招聘筆試題庫2024
- 消防接警員應(yīng)知應(yīng)會考試題庫大全-上(單選、多選題)
- 2024風(fēng)電場在役葉片維修全過程質(zhì)量控制技術(shù)要求
- 湖南省岳陽市岳陽樓區(qū)2023-2024學(xué)年七年級下學(xué)期期末數(shù)學(xué)試題(解析版)
- 自適應(yīng)噪聲抵消技術(shù)的研究
- 山東省臨沂市羅莊區(qū)2024屆中考聯(lián)考化學(xué)試題含解析
評論
0/150
提交評論