




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上幾何概型的常見題型及典例分析一幾何概型的定義1定義:如果每個事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型.2特點:(1)無限性,即一次試驗中,所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;(2)等可能性,即每個基本事件發(fā)生的可能性均相等.3計算公式:說明:用幾何概率公式計算概率時,關(guān)鍵是構(gòu)造出隨機事件所對應(yīng)的幾何圖形,并對幾何圖形進行度量.4古典概型和幾何概型的區(qū)別和聯(lián)系:(1)聯(lián)系:每個基本事件發(fā)生的都是等可能的.(2)區(qū)別:古典概型的基本事件是有限的,幾何概型的基本事件是無限的;兩種概型的概率計算公式的含義
2、不同.二常見題型(一)、與長度有關(guān)的幾何概型例1、在區(qū)間上隨機取一個數(shù),的值介于到之間的概率為( ).A. B. C. D. 分析:在區(qū)間上隨機取任何一個數(shù)都是一個基本事件.所取的數(shù)是區(qū)間的任意一個數(shù),基本事件是無限多個,而且每一個基本事件的發(fā)生都是等可能的,因此事件的發(fā)生的概率只與自變量的取值范圍的區(qū)間長度有關(guān),符合幾何概型的條件.解:在區(qū)間上隨機取一個數(shù),即時,要使的值介于0到之間,需使或或,區(qū)間長度為,由幾何概型知使的值介于0到之間的概率為. 故選A.例2、 如圖,A,B兩盞路燈之間長度是30米,由于光線較暗,想在其間再隨意安裝兩盞路燈C,D,問A與C,B與D之間的距離都不小于10米的概
3、率是多少?思路點撥 從每一個位置安裝都是一個基本事件,基本事件有無限多個,但在每一處安裝的可能性相等,故是幾何概型解 記 E:“A與C,B與D之間的距離都不小于10米”,把AB三等分,由于中間長度為30×=10米,.方法技巧 我們將每個事件理解為從某個特定的幾何區(qū)域內(nèi)隨機地取一點,該區(qū)域中每一點被取到的機會都一樣,而一個隨機事件的發(fā)生則理解為恰好取到上述區(qū)域內(nèi)的某個指定區(qū)域中的點,這樣的概率模型就可以用幾何概型來求解例3、在半徑為R的圓內(nèi)畫平行弦,如果這些弦與垂直于弦的直徑的交點在該直徑上的位置是等可能的,求任意畫的弦的長度不小于R的概率。思考方法:由平面幾何知識可知,垂直于弦的直徑
4、平分這條弦,所以,題中的等可能參數(shù)是平行弦的中點,它等可能地分布在于平行弦垂直的直徑上(如圖1-1)。也就是說,樣本空間所對應(yīng)的區(qū)域G是一維空間(即直線)上的線段MN,而有利場合所對應(yīng)的區(qū)域GA是長度不小于R的平行弦的中點K所在的區(qū)間。解法1.設(shè)EF與E1F1是長度等于R的兩條弦,直徑MN垂直于EF和E1F1,與他們分別相交于K和K1(圖1-2)。依題設(shè)條件,樣本空間所對應(yīng)的區(qū)域是直徑MN,有L(G)=MN=2R,注意到弦的長度與弦心距之間的關(guān)系比,則有利場合所對對應(yīng)的區(qū)域是KK1,有以幾何概率公式得。解法2.如圖1-1所示,設(shè)園O的半徑為R, EF為諸平行弦中的任意一條,直徑MN弦EF,它們
5、的交點為K,則點K就是弦EF的中點。設(shè)OK=x,則 x -R,R, 所以 L(G)=2R設(shè)事件A為“任意畫的弦的長度不小于R”,則A的有利場合是 ,解不等式,得 所以 于是 評注 本題結(jié)構(gòu)比較簡單,題中直接給出了等可能值參數(shù);樣本空間和有利場合所對應(yīng)的區(qū)域,從圖上都可以直接看出。兩種解法各有特色,解法1充分利用平面幾何知識,在本題似較簡便,解法2引進變量x把代數(shù)知識和幾何知識有機的結(jié)合起來,從表面上看解題過程不甚簡便,但確具有推廣價值,這種方法可以求解復(fù)雜的幾何概率問題。例4、 在長為12cm的線段AB上任取一點M,并以線段AM為邊作正方形,求這個正方形的面積介于36cm2 與81c
6、m2之間的概率 分析:正方形的面積只與邊長有關(guān),因此,此題可以轉(zhuǎn)化為在12cm長的線段AB上任取一點M,求使得AM的長度介于6cm與9cm之間的概率解:記“面積介于36cm2 與81cm2之間”為事件A,事件A的概率等價于“長度介于6cm與9cm之間”的概率,所以,P(A)= =小結(jié):解答本例的關(guān)鍵是,將正方形的面積問題先轉(zhuǎn)化為與邊長的關(guān)系。練習(xí): 2、已知地鐵列車每10 min一班,在車站停1 min,則乘客到達站臺立即乘上車的概率是()A. B. C. D.解析:設(shè)乘客到達站臺立即乘上車為事件A,試驗的所有結(jié)果構(gòu)成的區(qū)域長度為10 min,而構(gòu)成事件A的區(qū)域長度為1 min,故P
7、(A).答案:A3、已知集合Ax|1<x<5,Bx|>0,在集合A中任取一個元素x ,則事件“xAB”的概率是_解析:由題意得Ax|1<x<5,Bx|2<x<3,由幾何概型知:在集合A中任取一個元素x,則xAB的概率為P.答案:4、 小趙欲在國慶六十周年之后從某車站乘車外出考察,已知該站發(fā)往各站的客車均每小時一班,求小趙等車時間不多于10分鐘的概率分析:因為客車每小時一班,而小趙在060分鐘之間任何一個時刻到車站等車是等可能的, 所以他在哪個時間段到站等車的概率只與該時間段的長度有關(guān),而與該時間段的位置無關(guān),這符合幾何概型的條件,且屬于幾何概型中的長度
8、類型.解析:設(shè)A=等待的時間不多于10分鐘,我們所關(guān)心的事件A恰好是到站等車的時刻位于50,60這一時間段內(nèi),而事件的總體是整個一小時,即60分鐘,因此,由幾何概型的概率公式,得P(A)= =,即此人等車時間不多于10分鐘的概率為(二)、與面積有關(guān)的幾何概型例1、為長方形,為的中點,在長方形內(nèi)隨機取一點,取到的點到的距離大于1的概率為( )A B. C. D. 分析:由于是隨機的取點,點落在長方形內(nèi)每一個點的機會是等可能的,基本事件是無限多個,所以符合幾何概型.解:長方形面積為2,以為圓心,1為半徑作圓,在矩形內(nèi)部的部分(半圓)面積為,因此取到的點到的距離大于1的面積為,則取到的點到的距離大于
9、1的概率為. 故選B.例2、 如圖,射箭比賽的箭靶涂有五個彩色的分環(huán)從外向內(nèi)依次為白色、黑色、藍色、紅色,靶心為金色金色靶心叫“黃心”奧運會的比賽靶面直徑為122 cm,靶心直徑為12.2 cm.運動員在70 m外射箭假設(shè)運動員射的箭都能中靶,且射中靶面內(nèi)任一點都是等可能的,那么射中黃心的概率為多少?思路點撥 此為幾何概型,只與面積有關(guān)解 記“射中黃心”為事件B,由于中靶點隨機地落在面積為的大圓內(nèi),而當(dāng)中靶點落在面積為的黃心時,事件B發(fā)生,于是事件B發(fā)生的概率為.即:“射中黃心”的概率是0.01.方法技巧 事件的發(fā)生是“擊中靶心”即“黃心”的面積;總面積為最大環(huán)的圓面積例3、在平面直角坐標(biāo)系中
10、,設(shè)D是橫坐標(biāo)與縱坐標(biāo)的絕對值均不大于2的點構(gòu)成的區(qū)域,E是到原點的距離不大于1的點構(gòu)成的區(qū)域,向D中隨意投一點,則落入E中的概率為 。解析:如圖:區(qū)域D表示邊長為4的正方形ABCD的內(nèi)部(含邊界),而區(qū)域E表示單位圓及其內(nèi)部,因此。 答案 點評:本小題中的試驗結(jié)果是區(qū)域中的部分點集,其結(jié)果是不可數(shù)的,屬于幾何概型中典型的面積之比。 例4、在三角形ABC中任取一點P,證明:ABP與ABC的面積之比大于的概率為。思考方法 本題的隨機點是的頂點P,它等可能的分布在中,因此,與樣本空間對應(yīng)的平面區(qū)域是,注意到于有公共邊AB,所以的面積決定于頂點P離底邊AB的距離。這樣不難確定與有利場合相對應(yīng)的平面區(qū)
11、域。解 設(shè)與的面積之比為,的高CD為h,的高PG為h1,公共底邊AB的長為c,(圖2)則 過點P作EF/AB,交CD于H,則有立場合所對應(yīng)的平面區(qū)域為.于是所求概率為注意到EF/AB,,且 CH=h -h1 = h-h=, 由此,原題得證。評注 本題的樣本空間雖然與平面區(qū)域相對應(yīng),但因三角形ABC于三角形ABP有公共底邊AB,所以,實際變化著的量只有一個(即點P于AB的距離),問題還比較簡單,對于較復(fù)雜的平面區(qū)域,常常要根據(jù)題設(shè)選定兩個變量,由各自的約束條件確定樣本空間于有立場合的相應(yīng)區(qū)域。例5、將長為L的木棒隨機的折成3段,求3段構(gòu)成三角形的概率解:設(shè)“3段構(gòu)成三角形”分別表示其中兩段的長度
12、,則第三段的長度為由題意,要構(gòu)成三角形,須有,即;,即;,即故如圖1所示,可知所求概率為例6、已知函數(shù)f(x)x2axb.若a、b都是從區(qū)間0,4任取的一個數(shù),則f(1)0成立的概率是_解析:f(1)1ab0,即ab1,如圖:A(1,0),B(4,0),C(4,3),SABC,P.答案:練習(xí)1、ABCD為長方形,AB2,BC1,O為AB的中點在長方形ABCD內(nèi)隨機取一點,取到的點到O的距離大于1的概率為 ()A. B1 C. D1解析:對應(yīng)長方形的面積為2×12,而取到的點到O的距離小于等于1時,其是以O(shè)為圓心,半徑為1所作的半圓,對應(yīng)的面積為××12,那么滿足條
13、件的概率為:11.答案:B2、設(shè)1a1,1b1,則關(guān)于x的方程x2axb20有實根的概率是 ()A. B. C. D.解析:由題知該方程有實根滿足條件作平面區(qū)域如右圖:由圖知陰影面積為1,總的事件對應(yīng)面積為正方形的面積,故概率為.答案:B3、已知(x,y)|xy6,x0,y0,A(x,y)|x4,y0,x2y0,若向區(qū)域上隨機投一點P,則點P落入?yún)^(qū)域A的概率為 ()A. B. C. D.解析:作出兩集合表示的平面區(qū)域如圖所示容易得出所表示的平面區(qū)域為三角形AOB及其邊界,A表示的區(qū)域為三角形OCD及其邊界容易求得D(4,2)恰為直線x4,x2y0,xy6三線的交點則可得SAOB×6&
14、#215;618,SOCD×4×24.所以點P落在區(qū)域A的概率為.答案:D4、在區(qū)域內(nèi)任取一點P,則點P落在單位圓x2y21內(nèi)的概率為()A. B. C. D.解析:區(qū)域為ABC內(nèi)部(含邊界),則概率為P.答案:D5、在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是_解析:以A、B、C為圓心,以1為半徑作圓,與ABC相交出三個扇形(如圖所示),當(dāng)P落在陰影部分時符合要求P.答案:6、在區(qū)間0,1上任意取兩個實數(shù)a,b,則函數(shù)f(x)x3axb在區(qū)間1,1上有且僅有一個零點的概率為_解析:f(x)x2a,故f(x)在x1,1上單調(diào)遞增,
15、又因為函數(shù)f(x)x3axb在1,1上有且僅有一個零點,即有f(1)·f(1)<0成立,即(ab)(ab)<0,則(ab)(ab)>0,可化為或由線性規(guī)劃知識在平面直角坐標(biāo)系aOb中畫出這兩個不等式組所表示的可行域,再由幾何概型可以知道,函數(shù)f(x)x3axb在1,1上有且僅有一個零點的概率為可行域的面積除以直線a0,a1,b0,b1圍成的正方形的面積,計算可得面積之比為。答案:7、已知函數(shù)f(x)x22axb2,a,bR.(1)若a從集合0,1,2,3中任取一個元素,b從集合0,1,2中任取一個元素,求方程f(x)0有兩個不相等實根的概率;(2)若a從區(qū)間0,2中
16、任取一個數(shù),b從區(qū)間0,3中任取一個數(shù),求方程f(x)0沒有實根的概率解:(1)a取集合0,1,2,3中任一個元素,b取集合0,1,2中任一個元素,a,b的取值的情況有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一個數(shù)表示a的取值,第二個數(shù)表示b的取值,即基本事件總數(shù)為12.設(shè)“方程f(x)0有兩個不相等的實根”為事件A,當(dāng)a0,b0時,方程f(x)0有兩個不相等實根的充要條件為ab.當(dāng)ab時,a,b取值的情況有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),即A包含
17、的基本事件數(shù)為6,方程f(x)0有兩個不相等實根的概率P(A).(2)a從區(qū)間0,2中任取一個數(shù),b從區(qū)間0,3中任取一個數(shù),則試驗的全部結(jié)果構(gòu)成區(qū)域(a,b)|0a2,0b3,這是一個矩形區(qū)域,其面積S2×36.設(shè)“方程f(x)0沒有實根”為事件B,則事件B所構(gòu)成的區(qū)域為M(a,b)|0a2,0b3,ab,即圖中陰影部分的梯形,其面積SM6×2×24. 由幾何概型的概率計算公式可得方程f(x)0沒有實根的概率P(B).(三)、與角度有關(guān)的幾何概型例1、在圓心角為90°的扇形中,以圓心為起點做射線,求使得和都不小于30°的概率?分析:此題關(guān)鍵是
18、搞清過作射線可以在扇形的任意位置,而且是等可能的,因此基本事件的發(fā)生是等可能的.解:記事件是“做射線,使得和都不小于30°”,則符合條件的射線應(yīng)落在扇形中,所以例2、如圖所示,在等腰直角中,過直角頂點在內(nèi)部做一條射線,與線段交于點,求CABMD的概率。 分析:當(dāng)時,有,故欲使,應(yīng)有,即所作的射線應(yīng)落在時的內(nèi)部。解析:在上取,連接,則,記“在內(nèi)部作一條射線,與線段交于點,”為事件A,則,所以,所求概率為。點評:本題所求事件的本質(zhì)是在內(nèi)部做一條射線,所構(gòu)成的區(qū)域是一個“角”域,故應(yīng)屬于幾何概型中的角度之比類型;本題極易易犯的錯誤是,用長度的比得出這一錯誤結(jié)果。例3、在等腰RtABC中,C
19、=900,在直角邊BC上任取一點M,求的概率(答案:)(四)、與體積有關(guān)的幾何概型例1、在5升水中有一個病毒,現(xiàn)從中隨機地取出1升水,含有病毒的概率是多大?分析:病毒在這5升水中的分布可以看作是隨機的,取得的1升水可以看作構(gòu)成事件的區(qū)域,5升水可以看作是試驗的所有結(jié)果構(gòu)成的區(qū)域,因此可以用體積比公式計算其概率.解:“取出1升水,其中含有病毒”這一事件記作事件A,則從而所求的概率為0.2.例2、任取三條不大于a的線段,求這三條線段能夠成一個三角形的概率。思考方法 題設(shè)的三條線段互不相干,所以可設(shè)置三個獨立變量。注意到三條線段構(gòu)成三角形的充要條件,可推得有立場合的約束條件。由此原題可以解出。解 設(shè)
20、三條線段的長分別為x、y、z,則樣本空間是(1)有三條線段構(gòu)成三角形的條件可知,其中的任意兩條之和比大于第三條線段,于是,有利場合的可能情形是(2) 把條件(1)、(2)所限制的區(qū)域,在空間直角坐標(biāo)系中表示出來,有如圖2-3所示。其中(1)所對應(yīng)的區(qū)域G是正方體OA4,(2)所對應(yīng)的區(qū)域GA是六面體OA1A2A3A4,且有例3、在區(qū)間0,l上任取三個實數(shù)x.y.z,事件A=(x,y,z)| x2+y2+z21, x0,y0,z0 (1)構(gòu)造出隨機事件A對應(yīng)的幾何圖形; (2)利用該圖形求事件A的概率.思路點撥: 在空間直角坐標(biāo)系下,要明確x2+y2+z21表示的幾何圖形是以原點為球心,半徑r=
21、1的球的內(nèi)部事件A對應(yīng)的幾何圖形所在位置是隨機的,所以事件A的概率只與事件A對應(yīng)的幾何圖形的體積有關(guān),這符合幾何概型的條件解:(1)A=(x,y,z)| x2+y2+z21, x0,y0,z0表示空間直角坐標(biāo)系中以原點為球心,半徑r=1的球的內(nèi)部部分中x0,y0,z0的部分,如圖所示 (2)由于x,y,z屬于區(qū)間0,1,當(dāng)x=y=z=1時,為正方體的一個頂點,事件A為球在正方體內(nèi)的部分 .方法技巧:本例是利用幾何圖形的體積比來求解的幾何概型,關(guān)鍵要明白點P(x,y,z)的集合所表示的圖形從本例可以看出求試驗為幾何概型的概率,關(guān)鍵是求得事件所占區(qū)域和整個區(qū)域的幾何度量,然后代入公式即可解,另外要
22、適當(dāng)選擇觀察角度.(五)、會面問題中的概率例1、 某碼頭接到通知,甲、乙兩艘外輪都會在某天9點到10點之間的某一時刻到達該碼頭的同一個泊位,早到的外輪要在該泊位???0分鐘辦理完手續(xù)后才離開,求兩艘外輪至少有一艘在停靠泊位時必須等待的概率。解析:設(shè)事件表示兩艘外輪至少有一艘在停靠泊位時必須等待,兩艘外輪到的時間分別為9點到10點之間的x分、y分,則|x-y|20,0x,y60,即,以9點為原點,建立平面直角坐標(biāo)系如圖所示,事件所對應(yīng)的區(qū)域如圖中陰影區(qū)域所示:所以,其概率P(A)=陰影面積/ABCD面積=5/9。小結(jié):“會面”類型常見的載體是兩人相約見面、輪船??坎次坏?,其關(guān)鍵是構(gòu)建相遇的不等式
23、(組),借助于線性規(guī)劃知識,將其面積之比求出,使得問題得以解決。例2、兩人約定在20:00到21:00之間相見,并且先到者必須等遲到者40分鐘方可離去,如果兩人出發(fā)是各自獨立的,在20:00到21:00各時刻相見的可能性是相等的,求兩人在約定時間內(nèi)相見的概率思路點撥 兩人不論誰先到都要等遲到者40分鐘,即小時設(shè)兩人分別于x時和y時到達約見地點,要使兩人在約定的時間范圍內(nèi)相見,當(dāng)且僅當(dāng)-x-y,因此轉(zhuǎn)化成面積問題,利用幾何概型求解解 設(shè)兩人分別于x時和y時到達約見地點,要使兩人能在約定時間范圍內(nèi)相見,當(dāng)且僅當(dāng)-x-y.兩人到達約見地點所有時刻(x,y)的各種可能結(jié)果可用圖中的單位正方形內(nèi)(包括邊
24、界)的點來表示,兩人能在約定的時間范圍內(nèi)相見的所有時刻(x,y)的各種可能結(jié)果可用圖中的陰影部分(包括邊界)來表示因此陰影部分與單位正方形的面積比就反映了兩人在約定時間范圍內(nèi)相遇的可能性的大小,也就是所求的概率為.方法技巧 會面的問題利用數(shù)形結(jié)合轉(zhuǎn)化成面積問題的幾何概型難點是把兩個時間分別用x,y兩個坐標(biāo)表示,構(gòu)成平面內(nèi)的點(x,y),從而把時間是一段長度問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型幾何概型問題(六)、與線性規(guī)劃有關(guān)的幾何概型例1、小明家的晚報在下午5:306:30之間的任何一個時間隨機地被送到,小明一家在下午6:007:00之間的任何一個時間隨機地開始晚餐.那么晚報在晚餐開
25、始之前被送到的概率是多少?分析:該題題意明確,但如何轉(zhuǎn)化為數(shù)學(xué)模型需要從實際問題中分析出存在的兩個變量.由于晚報送到和晚飯開始都是隨機的,設(shè)晚報送到和晚飯開始的時間分別為,然后把這兩個變量所滿足的條件寫成集合的形式,把問題轉(zhuǎn)化為線性規(guī)劃問題進行求解. 解:設(shè)晚報送到和晚飯開始的時間分別為.用表示每次試驗的結(jié)果,則所有可能結(jié)果為:,即為圖3中正方形的面積;記晚報在晚餐開始之前被送到為事件,則事件的結(jié)果為:,即為圖2中陰影部分區(qū)域. ,.所以所求概率為:.故晚報在晚餐開始之前被送到的概率是.反思:此類問題常會涉及兩個隨機變量的相互關(guān)系,其求解的步驟為:(1)找設(shè)變量.從問題中找出兩個隨機變量,設(shè)為
26、;(2)集合表示.用表示每次試驗結(jié)果,則可用相應(yīng)的集合分別表示出全部結(jié)果和事件所包含的試驗結(jié)果.一般來說,兩個集合都是幾個二元一次不等式的交集.(3)作出區(qū)域.把上面的集合所表示的平面區(qū)域作出,并求出集合對應(yīng)的區(qū)域的面積.(4)計算求解.由幾何概型公式求出概率.(七)、與定積分有關(guān)的幾何概型例1、在區(qū)間上任取兩數(shù),求二次方程的兩根都是實根的概率.分析:可用表示試驗結(jié)果.求出所有可能結(jié)果的面積和方程有實根的結(jié)果的面積,再利用幾何概型來解答.解:用表示每次試驗結(jié)果,則所有可能結(jié)果為:,即為圖3中正方形的面積;由方程有實根得:,則方程有實根的可能結(jié)果為,即為圖4中陰影部分區(qū)域.陰影部分面積可用定積分
27、來計算.所以,所以所求概率為:.(八)、與隨機模擬有關(guān)的幾何概型例1、如圖5,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設(shè)正方形的邊長為2,的面積為1,并向正方形中隨機投擲個點,以表示落入中的點的數(shù)目(I)求的均值;(II)求用以上方法估計的面積時,的面積的估計值與實際值之差在區(qū)間內(nèi)的概率附表:分析:本題從表面來看似乎與幾何概型無關(guān),其實它是一個幾何概型的逆向問題與n次獨立重復(fù)實驗的綜合題,而且本題有別于常規(guī)的面積型概率計算,設(shè)計新穎,通過隨機模擬來求不規(guī)則圖形的面積。解:每個點落入中的概率均為依題意知()(
28、)依題意所求概率為,例2、利用隨機模擬方法計算圖中陰影部分(由曲線y= 2x與x軸、x=±1圍成的部分)面積思路點撥 不規(guī)則圖形的面積可用隨機模擬法計算解 (1)利用計算機產(chǎn)生兩組0,1上的隨機數(shù),a1=rand( ),b1=rand( ) (2)進行平移和伸縮變換,a=(a1-0.5)*2,b=b1*2,得到一組0,2上的均勻隨機數(shù) (3)統(tǒng)計試驗總次數(shù)N和落在陰影內(nèi)的點數(shù)N1. (4)計算頻率,則即為落在陰影部分的概率的近似值 (5)利用幾何概型公式得出點落在陰影部分的概率 (6)因為=,所以S=即為陰影部分的面積.方法技巧 根據(jù)幾何概型計算公式,概率等于面積之比,如果概率用頻率
29、近似在不規(guī)則圖形外套上一個規(guī)則圖形,則不規(guī)則圖形的面積近似等于規(guī)則圖形面積乘以頻率而頻率可以通過隨機模擬的方法得到,從而求得不規(guī)則圖形面積的近似值 (九)、生活中的幾何概型例1、 某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時一班,求此人等車時間不多于10分鐘的概率分析:假設(shè)他在060分鐘之間任何一個時刻到車站等車是等可能的,但在0到60分鐘之間有無窮多個時刻,不能用古典概型公式計算隨機事件發(fā)生的概率.可以通過幾何概型的求概率公式得到事件發(fā)生的概率.因為客車每小時一班,他在0到60分鐘之間任何一個時刻到站等車是等可能的,所以他在哪個時間段到站等車的概率只與該時間段的長度有關(guān),而與該時間
30、段的位置無關(guān),這符合幾何概型的條件.解:設(shè)A=等待的時間不多于10分鐘,我們所關(guān)心的事件A恰好是到站等車的時刻位于50,60這一時間段內(nèi),因此由幾何概型的概率公式,得P(A)= =,即此人等車時間不多于10分鐘的概率為例2、某公共汽車站每隔15分鐘有一輛汽車到達,乘客到達車站的時刻是任意的,求一個乘客到達車站后候車時間大于10 分鐘的概率?分析:把時刻抽象為點,時間抽象為線段,故可以用幾何概型求解。解:設(shè)上輛車于時刻T1到達,而下一輛車于時刻T2到達,線段T1T2的長度為15,設(shè)T是T1T2上的點,且T1T=5,T2T=10,如圖所示:T1T2T記候車時間大于10分鐘為事件A,則當(dāng)乘客到達車站
31、的時刻落在線段T1T上時,事件發(fā)生,區(qū)域D的測度為15,區(qū)域d的測度為5。 所以答:侯車時間大于10 分鐘的概率是1/3.例3、假設(shè)題設(shè)條件不變,求候車時間不超過10分鐘的概率.分析:T1T2T例4、某公共汽車站每隔15分鐘有一輛汽車到達,并且出發(fā)前在車站???分鐘。乘客到達車站的時刻是任意的,求一個乘客到達車站后候車時間大于10 分鐘的概率?分析:設(shè)上輛車于時刻T1到達,而下一輛車于時刻T0到達,T2時刻出發(fā)。線段T1T2的長度為15,設(shè)T是T1T2上的點,且T0T2=3,TT0=10,如圖所示:T1T2TT0記候車時間大于10分鐘為事件A,則當(dāng)乘客到達車站的時刻落在線段T1T上時,事件A發(fā)
32、生,區(qū)域D的測度為15,區(qū)域d的測度為15-3-10=2。 所以 例5、平面上畫有一組平行線,其間隔交替為1.5cm和10cm,任意地往平面上投一半徑為2cm的圓,求此圓不與平行線相交的概率。思考方法 本題的難處,在于題中沒有直接指明等可能值參數(shù),為此,需發(fā)掘“任意的往平面上投一直徑為2cm的圓”之真實含義,找出具有某種等可能的隨機點。注意到定半徑的圓的位置決定于圓心,可以取圓心作隨機點,由于平行線可以向兩端無限延伸,而往平面上投圓又是任意的,所以只要取這組平行線的某一條垂線就可以了;考慮到題設(shè)平行線的間隔交替的為1.5cm和10cm,則研究相鄰三條平行線之間情況就可以反映問題的全貌。經(jīng)上面的
33、分析,我們可以取圓心為隨機點,它等可能地分布在相鄰三條平行線的某一垂線上(如圖1-3)由此原題不難解出。解 設(shè)L1、L2、L3是三條相鄰的平行線,EPF是它們之間的垂線(圖1-3),則樣本空間所對的區(qū)域是線段EF,有L(G)=EF=1.5+10=11.5(cm)注意到L1與L2相鄰1.5cm,所以圓心如果落在線段EP上,那么圓與平行線必定相交。設(shè)半徑為2cm的O、O1分別切L2、L3于P、F,則事件的有利場合所對應(yīng)的區(qū)域應(yīng)是線段OO1有L(GA)=OO1=PF-OP-O1F=10-2-2=6cm。評注 從本題可以看出,如果題中沒有直接指明等可能值參數(shù),則解題的關(guān)鍵,在于斟酌題設(shè)條件,發(fā)掘等可能
34、值參數(shù)的含義,找出隨機點的分布情況。例6、廣告法對插播廣告的時間有一定的規(guī)定,某人對某臺的電視節(jié)目做了長期的統(tǒng)計后得出結(jié)論,他任意時間打開電視機看該臺節(jié)目,看不到廣告的概率為,那么該臺每小時約有_分鐘的廣告解析:60×(1)6分鐘答案:6例7、甲、乙兩人約定在下午4:005:00間在某地相見他們約好當(dāng)其中一人先到后一定要等另一人15分鐘,若另一人仍不到則可以離去,試求這人能相見的概率。解:設(shè)x為甲到達時間,為乙到達時間.建立坐標(biāo)系,如圖時可相見,即陰影部分例8、兩對講機持有者張三、李四,為卡爾貨運公司工作,他們對講機的接收范圍是25km,下午3:00張三在基地正東30km內(nèi)部處,向基地行駛,李四在基地正北40km內(nèi)部處,向基地行駛,試問下午3:00,他們可以交談的概率。解:設(shè)為張三、李四與基地的距離,以基地為原點建立坐標(biāo)系.他們構(gòu)成實數(shù)對,表示區(qū)域總面積為1200,可以交談即故例9、某勘探隊勘測到,在1萬平方千米的海域中有40平方千米的大陸架儲藏著石油,假設(shè)在海域中任意一點鉆探,鉆到油層面的概率是多少?分析:石油在1萬平方千米的海域大陸架的分布可以看作是隨機的而40平方千米可看作構(gòu)成事件的區(qū)域面積,由幾何概型公式可以求得概率。解:記“鉆到油層面”為事件A,則P(A)= =0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國非開挖設(shè)備市場運行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國銣礦市場運營狀況及發(fā)展前景分析報告
- 2025-2030年中國針織類服裝行業(yè)運行動態(tài)及發(fā)展前景分析報告
- 2025-2030年中國金屬波紋補償器市場發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國觸摸屏機柜行業(yè)市場競爭狀況及發(fā)展趨勢分析報告
- 2025-2030年中國血漿代用品行業(yè)發(fā)展現(xiàn)狀規(guī)劃研究報告
- 2025-2030年中國蟻醛行業(yè)運營現(xiàn)狀與發(fā)展趨勢分析報告
- 2025-2030年中國硅碳棒行業(yè)運行動態(tài)與營銷策略研究報告
- 2025-2030年中國石墨礦市場運行狀況及發(fā)展趨勢分析報告
- 二年級閱讀導(dǎo)航(下)
- 鹽霧試驗過程記錄表
- 小學(xué)校務(wù)監(jiān)督委員會實施方案
- Q∕SY 13006-2016 招標(biāo)項目標(biāo)段(包)劃分指南
- 《大學(xué)英語教學(xué)大綱詞匯表》(1~4級,5~6級)
- DB11-T1630-2019城市綜合管廊工程施工及質(zhì)量驗收規(guī)范
- 醫(yī)院消毒供應(yīng)中心清洗、消毒、滅菌質(zhì)控評分表
- 27供應(yīng)室清洗消毒及滅菌效果監(jiān)測制度
- 金色大氣教師節(jié)頒獎典禮頒獎盛典PPT模板
- OECD Good laboratory practice (GLP)中英文對照版
- 生化工程,第七章反應(yīng)器放大與設(shè)計
評論
0/150
提交評論