優(yōu)選法與試驗_第1頁
優(yōu)選法與試驗_第2頁
優(yōu)選法與試驗_第3頁
優(yōu)選法與試驗_第4頁
優(yōu)選法與試驗_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、優(yōu)選法與試驗優(yōu)選法與試驗 設(shè)計初步設(shè)計初步簡簡 介介普通高中課程標準實驗教科書普通高中課程標準實驗教科書 選修選修4-7 人民教育出版社中數(shù)室人民教育出版社中數(shù)室 張唯一張唯一 優(yōu)選法是合理地安排試驗以求迅速找到最佳點的數(shù)學方法。試驗設(shè)計也是一種數(shù)學方法,一般來說,它是考慮在多因素情況下安排試驗的方法,它可以幫助人們通過較少的試驗次數(shù)得到較好的因素組合,形成較好的設(shè)計方案。 本專題將結(jié)合具體實例,初步地介紹單因素、雙因素的優(yōu)選法和多因素的正交試驗設(shè)計方法,并對方法給予簡單的說明,幫助學生理解這些方法的基本思想,并能思考和解決一些簡單的實際問題。內(nèi)容與要求1.通過豐富的生活、生產(chǎn)案例,使學生感受

2、在現(xiàn)實生活中存在著大量的優(yōu)選問題。2.通過分析和解決具體實際問題,使學生掌握分數(shù)法、0.618法及其適用范圍,可以利用計算機(或計算器)進行試驗,并能思考和嘗試運用這些方法解決一些實際問題,體會優(yōu)選的思想方法。3.了解斐波那契數(shù)列Fn,理解在試驗次數(shù)確定的情況下分數(shù)發(fā)最佳性的證明,通過連分數(shù)知道 Fn-1/Fn和黃金分割的關(guān)系。4.通過一些具體的實例,使學生知道對分法、爬山法、分批試驗法,以及目標函數(shù)為多峰情況下的處理方法。5.通過豐富的實例,了解多因素優(yōu)選問題,了解處理雙因素問題的一些優(yōu)選方法,進一步體會優(yōu)選的思想方法。內(nèi)容與要求6.通過豐富的生活、生產(chǎn)案例,使學生感受在現(xiàn)實生活中存在著大量

3、的試驗設(shè)計問題。7.通過對具體案例(因素不超過3,水平不超過4)的分析,理解運用正交試驗設(shè)計方法解決簡單問題的過程,了解正交試驗的思想和方法,并能運用這種方法思考和解決一些簡單的實際問題。8.完成一個學習總結(jié)報告。報告應包括三方面的內(nèi)容:(1)知識的總結(jié)。對本專題的整體結(jié)構(gòu)和內(nèi)容的理解,對試驗設(shè)計方法及其意義的認識。(2)拓展。通過查閱資料、調(diào)查研究、訪問求教、獨立思考,對某些內(nèi)容、某些結(jié)果和應用進行拓展和深入。(3)對本專題的感受、體會、看法。說明與建議:1.本專題要求學生掌握一些優(yōu)選的方法,盡管沒有給予嚴格的數(shù)學證明,目的是讓學生理解這些方法的思想和實質(zhì)。2.作為一門應用課程,有條件的地方

4、應讓學生用所學的方法親自做一些試驗,以便更好地掌握這些方法。3.使學生認識到,應根據(jù)問題的具體情況討論采用何種方法更為有效,并要與具體問題的專業(yè)知識相結(jié)合。同時,要能比較不同方法的利弊和適用范圍。優(yōu)選法與試驗設(shè)計初步 第一講 優(yōu)選法 第二講 試驗設(shè)計初步優(yōu)選法 第一講 優(yōu)選法一 什么叫優(yōu)選法二 單峰函數(shù)三 黃金分割法0.618法四 分數(shù)法五 其他幾種常用優(yōu)選法六 多因素方法試驗設(shè)計 第二講 試驗設(shè)計初步一 正交試驗設(shè)計法二 正交試驗的應用本專題知識框架優(yōu)選法試驗設(shè)計初步單因素雙因素單峰情形多峰情形多因素正交試驗設(shè)計0.618法分數(shù)法對分法縱橫對折法單峰情形從好點出發(fā)法平行線法雙因素盲人爬山法分

5、批試驗法盲人爬山法課時分配教學時間約為18課時,分配如下: 第一講 優(yōu)選法 約10課時 第二講 試驗設(shè)計初步 約6課時 學習總結(jié)報告 約2課時第一講 優(yōu)選法優(yōu)選法的概念單峰函數(shù)黃金分割法0.618法分數(shù)法其他幾種常用的優(yōu)選法多因素方法教學重點與難點 重點: 單因素問題的0.618法和分數(shù)法。 難點: 1.認識0.618法和分數(shù)法的原理; 2.認識分數(shù)法的最優(yōu)性。什么叫優(yōu)選法最優(yōu)化問題 為了使某些目標(如產(chǎn)量、質(zhì)量或經(jīng)濟指標等)達到最好的結(jié)果(如高產(chǎn)、優(yōu)質(zhì)、低消耗),就要找出使此目標達到最優(yōu)的有關(guān)因素(或變量)的某些值。這類問題在數(shù)學上稱為最優(yōu)化問題。近代解決最優(yōu)化問題的方法,大致分為兩大類:

6、一類是間接最優(yōu)化(或稱解析最優(yōu)化)方法,另一類是直接最優(yōu)化(或稱試驗最優(yōu)化)。所謂間接最優(yōu)化方法,就是要求把所研究的對象(如物理或化學過程)用數(shù)學方程描述出來,然后再用數(shù)學解析方法求出起最優(yōu)解。對于研究對象很難用數(shù)學形式來表達,或者表達式很復雜,只能直接通過試驗,根據(jù)試驗結(jié)果的比較而求得最優(yōu)解,就是直接最優(yōu)化方法。什么叫優(yōu)選法 本書介紹的優(yōu)選法都是直接最優(yōu)化方法。它是以數(shù)學原理為指導,用盡可能少的試驗次數(shù),迅速求得最優(yōu)解的方法。 在生產(chǎn)和科學試驗中,人們?yōu)榱诉_到優(yōu)質(zhì)、高產(chǎn)、低消耗等目標,需要對有關(guān)因素的最佳組合(簡稱最佳點)進行選擇,關(guān)于最佳組合(最佳點)的選擇問題,稱為選優(yōu)問題。 優(yōu)選法是根

7、據(jù)生產(chǎn)和科學研究中的不同問題,利用數(shù)學原理,合理安排試驗,以最少的試驗次數(shù)迅速找到最佳點的科學試驗方法。 20世紀60年代,著名數(shù)學家華羅庚親自組織推廣了優(yōu)選法,并在全國工業(yè)部門得到了廣泛的應用,取得了可喜的成果。編寫意圖與教學建議 1.什么叫優(yōu)選法引言中的兩個問題中的商品價格競猜游戲,蒸饅頭為“什么叫優(yōu)選法” 作鋪墊。主要涉及幾個感念: 最佳點 優(yōu)選問題 優(yōu)選法 三個概念相互聯(lián)系,只有了解了前面的概念才能了解后面的概念,教科書正是以這種順序循序漸進地提出它們的。編寫意圖與教學建議 試驗一詞的理解。 多舉優(yōu)選問題的實例,如電飯鍋做米飯,蒸饅頭,查電路斷點,商品定價等,幫助學生了解優(yōu)選問題廣泛存

8、在,優(yōu)選法大有用武之地,并形成對試驗的廣義理解。 關(guān)于探求池塘最深點的例子,在假設(shè)“池塘底部的高低變化猶如一個倒過來的單峰小山”的前提下,利用雙因素方法,以1m為試驗區(qū)間的條件下得出的結(jié)論。并建議在本講第六個問題“多因素方法”的學習中,能回顧這個問題,讓學生自己討論如何解決它。(二)單峰函數(shù) 炮彈飛行問題引入 這是一個有具體表達式的優(yōu)選問題圖1-1圖1-22221tan2cosgyxxv2sin2vxg(二)單峰函數(shù)單峰函數(shù)的定義中注意的兩個要點: f(x)在a,b上只有唯一的最大(?。┲迭cC; f(x)在a,C上遞增(減),在C,b上遞減(增)。 圖1-3 圖1-4教學中應注意: 1.結(jié)合圖

9、像1-3對上述兩點作直觀解釋,以幫助學生理解它們。但不能用圖像代替單峰函數(shù)定義的文字。 2.在給出單峰函數(shù)的定義后,要補充說明“我們規(guī)定,區(qū)間a,b上的單調(diào)(遞增或遞減)函數(shù)也是單峰函數(shù)。”需要指出:這樣的函數(shù)的最大(最?。┲迭c是區(qū)間端點。(二)單峰函數(shù)建議教學中能結(jié)合例子說明單因素問題、目標函數(shù)等概念,使學生能認識它們的意義?!叭裟繕撕瘮?shù)為單峰函數(shù),則最佳點與好點必在差點的同側(cè)”,這是縮小試驗范圍時,保留好點所在部分的重要理論根據(jù)??梢酝ㄟ^單峰函數(shù)的圖像認識外,還可以利用單峰函數(shù)定義,根據(jù)函數(shù)的單調(diào)性加以證明。 (1) (2) 圖1-4(三)黃金分割法0.618法 黃金分割數(shù)的導出 教材舉例

10、說明試驗效率的問題,并配了圖1-5. 圖1-5 為了合理選取試驗點,需要注意兩點:每次要進行比較的兩個試驗點,應關(guān)于相應試驗區(qū)間的中心對稱;每次舍去的區(qū)間占舍去前的區(qū)間長度的比例數(shù)應為相同。(三)黃金分割法0.618法根據(jù)上面的兩個原則,得出應滿足 (b-x1)/(b-a)=(x1-x2)/(x1-a) 圖1-6 圖1-7教科書是對一般的情況進行推導,為了簡單起見,可以假設(shè)試驗區(qū)間為0,1. (1-x)/1=(2x-1)/x,即x2+x-1=0,得x=0.618. (三)黃金分割法0.618法案例 煉鋼時通過加入含有特定化學元素的材料,使煉出來的鋼滿足一定的指標要求。假設(shè)為了煉出某種特定用途的

11、鋼,每噸需要加入某些元素的量在1000g到2000g之間,問如何通過試驗的方法找到它的最優(yōu)加入量。用折紙的方法,可以簡化計算過程,這樣做是使用幾何操作方法來保證以下兩點: 每次要進行比較的兩個試驗點,應關(guān)于相應試驗區(qū)間的中心對稱; 每次社區(qū)的區(qū)間長占舍去錢的區(qū)間長的比例數(shù)應相同。(三)黃金分割法0.618法試驗點的選取: x1=小+0.618 (大小); x2=小+大x1。一般:xn=小+大xm。 概括為“加兩頭,減中間”,教學中應注意使學生理解“加兩頭,減中間”的確切含義。這部分內(nèi)容,教學除教師講解和演示外,還應帶領(lǐng)學生實際操作,使其在了解做法依據(jù)的道理的基礎(chǔ)上熟悉操作過程。(三)黃金分割法

12、0.618法 如果兩次試驗結(jié)果一樣,在一般情況下,僅保留中間范圍,會不會劃去最佳點呢?這個問題可以引導學生根據(jù)單峰函數(shù)的定義找出答案。 精度的討論把有關(guān)不等式、指數(shù)、對數(shù)的知識與0.618法結(jié)合起來,教學中可以讓學生對這個問題進行自主探究。 “閱讀材料 黃金分割研究史”拓展性學習的材料,可以供學生自學,也可以在教學中將其中一些內(nèi)容穿插與講授之中,以豐富教學內(nèi)容,傳播數(shù)學文化。(四)分數(shù)法 案例1 在配置某種清洗液時,需要加入某中材料。經(jīng)驗表明,加入量大于130ml肯定不好。用150ml的錐形量杯計量加入量,該量杯的量程分為15格,每個代表10ml。用試驗法找出這種材料的最優(yōu)加入量。 兩個目的:

13、0.618法不能用于一切優(yōu)選問題;結(jié)合具體問題介紹分數(shù)法。(四)分數(shù)法漸進分數(shù)列:1/2,2/3,3/5,5/8,8/13, Fn/Fn+1, 案例1中設(shè)計連分數(shù)與斐波那契數(shù)列,應注意教材中連分數(shù)的表達式(2)與數(shù)列(3)之間的聯(lián)系。教學中不要對連分數(shù)與斐波那契數(shù)列進行過多的引申介紹和討論,夠用即可,而要以介紹分數(shù)法本身為重點,注意斐波那契數(shù)列的表示,第一項為F0,是為了后面“做k次試驗時用Fk/Fk+1代替0.618,其精度為1/Fk+1 ”的表述。除了以分數(shù)代替黃金分割常數(shù)外,分數(shù)法和0.618法并無其他不同,第一點確定后,后續(xù)試點口可以用“加兩頭,減中間”的方法來確定。案例1對試驗范圍的

14、劃分恰好與斐波那契數(shù)有關(guān)的類型,試驗范圍恰好為13項,于是可以直接用F5/F6代替0.618.案例2代表了另一種類型,通過調(diào)整試點的個數(shù)來選擇代替0.618的近似分數(shù),是在案例1基礎(chǔ)上的拓展。(四)分數(shù)法 分數(shù)法最優(yōu)性(在單峰函數(shù)的前提下)通過n次試驗,最多能從( Fn+11)個試驗點中保證找出最佳點;只有用分數(shù)法才能通過n次試驗保證從( Fn+11 )個試點中找出最佳點。 上兩結(jié)論可以推出分數(shù)法的最優(yōu)性,即尋找單峰函數(shù)的最佳點時,用分數(shù)法安排試驗最節(jié)約試驗次數(shù)。 教學中要介紹這些結(jié)論,讓學生認識到分數(shù)法最優(yōu)性的含義,并能初步了解它的推導原理。但不需要進行具體的證明,詳細證明可見附錄二。(五)

15、其他幾種常見的優(yōu)選法1.對分法 案例1 查找輸電線路故障 類比二分法 教學中應結(jié)合具體案例,強調(diào)這種操作比較簡單,選試點的方法是單一的選取中點。這一類試驗問題的特點是有已知的試驗標準,且能根據(jù)一次試驗的結(jié)果確定下次試驗的選擇方向。(五)其他幾種常見的優(yōu)選法 案例2 價格競猜,建議教學中讓學生獨立地分析此案例,然后進行討論交流。 饅頭放堿量。(五)其他幾種常見的優(yōu)選法2.盲人爬山法 一種采用小步調(diào)整策略的優(yōu)選法,其依據(jù)的原理就是“單峰函數(shù)的最佳點與好點在差點的同側(cè)”。 教學中介紹這種方法時,應注意結(jié)合能表示上述原理的單峰函數(shù)的圖像,借圖說話,使學生感受到它的合理性。(五)其他幾種常見的優(yōu)選法3.

16、分批試驗法 均分分批試驗法第一批第二批 比例分割分批試驗法第一批第二批(五)其他幾種常見的優(yōu)選法4.多峰的情形 多峰情形不是教學的重點,而是對單峰情形的進一步拓展。教學中應重在使學生認識到化多峰為單峰是解決多峰問題的基本思路。(六)多因素方法1.縱橫對折法2.從好點出發(fā)法3.平行線法4.平行線加速法5.雙因素盲人爬山法(六)多因素方法 教科書介紹雙因素問題的方法,主要是讓學生體會以下雙因素問題的一些優(yōu)選法,進一步體會優(yōu)選的思想方法。 教科書對雙因素的單峰性只是通過形象的說法給予介紹,沒有給出嚴格的數(shù)學定義 。 教科書沒有討論在舍棄區(qū)間時,不會把最佳點所在區(qū)域舍棄。教學中可以給予補充解析。第二講

17、 試驗設(shè)計初步正交表介紹正交試驗設(shè)計正交試驗的應用確定試驗的因素和水平選擇合適的正交表安排試驗方案試驗結(jié)果分析,選出最佳組合正交表的特征什么叫試驗設(shè)計? 試驗設(shè)計又叫實驗設(shè)計,是數(shù)理統(tǒng)計學的一個分支,研究如何制定試驗方案,以提高試驗效率,縮小隨機誤差的影響,并使試驗結(jié)果能有效進行統(tǒng)計分析的理論與方法。為什么要試驗設(shè)計 案例 玉米的產(chǎn)量 因素:種植密度A、施化肥量B、施肥時間、澆水量D. 試驗次數(shù): A3,B3,C3,D3:34=81 A4,B4,C4,D4:44=256 A10,B10,C10,D10:104=10000 隨機因素影響 任何一個試驗問題涉及兩個方面: 試驗的設(shè)計和數(shù)據(jù)的分析。

18、這兩個方面緊密相連,設(shè)計時要考慮到下一步如何進行數(shù)據(jù)分析。試驗設(shè)計的歷史 費歇爾作物收成變動研究,羅森斯特農(nóng)業(yè)實業(yè)站 試驗設(shè)計的主要方法 早期:區(qū)組設(shè)計、拉丁方設(shè)計、尤登設(shè)計 當今:正交試驗設(shè)計、回歸設(shè)計、混料設(shè)計、參數(shù)設(shè)計和均勻設(shè)計正交試驗設(shè)計 正交試驗設(shè)計是用正交表安排多因素的試驗設(shè)計和分析的一種方法。由于它操作方便、設(shè)計簡單,已成為多因素場合下進行試驗設(shè)計的首選方法之一。正交試驗設(shè)計的步驟1. 確定試驗的因素和水平2. 選擇合適正交表3. 安排試驗方案4. 分析試驗結(jié)果確定試驗的因素和水平 引入試驗設(shè)計的必要性。 案例1 某工產(chǎn)品的產(chǎn)量受到溫度A、反應時間B和催化劑濃度C三個因素的影響。在具體生產(chǎn)過程中,根據(jù)經(jīng)驗,溫度、反應時間及催化劑濃度分別可以取兩個水平: 溫度:A1=80,A2=90 ; 反應時間:B1=1h,B2=2h; 催化劑濃度:C1=5%,C2=6%。 現(xiàn)要在上述的情況下找出產(chǎn)量最佳的因素組合方案,并分析影響結(jié)果的主次因素。選擇正交表L4(23) 列號試驗號1231

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論