【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件_第1頁
【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件_第2頁
【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件_第3頁
【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件_第4頁
【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓圓 的的 對對 稱稱 性性【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓的對稱性圓的對稱性 圓是軸對稱圖形嗎?圓是軸對稱圖形嗎? 想一想想一想P88如果是如果是, ,它的對稱軸是什么它的對稱軸是什么? ?你能找到多少條對稱你能找到多少條對稱軸?軸?O你是用什么方法解決上述問題的你是用什么方法解決上述問題的? ?n圓是中心對稱圖形嗎?圓是中心對稱圖形嗎?如果是如果是, ,它的對稱中心是什么它的對稱中心是什么? ?你能找到多少條對稱軸?你能找到多少條對稱軸?你又是用什么方法解決這個你又是用什么方法解決這個問題的問題的? ?【最新】九年級數(shù)學(xué) 圓

2、的對稱性 課件人教版 課件圓的對稱性圓的對稱性 圓是軸對稱圖形圓是軸對稱圖形. . 想一想想一想P88圓的對稱軸是任意一條經(jīng)過圓心的直線圓的對稱軸是任意一條經(jīng)過圓心的直線, ,它有無它有無數(shù)條對稱軸數(shù)條對稱軸. .O可利用折疊的方法即可解決上述問題可利用折疊的方法即可解決上述問題. .n圓也是中心對稱圖形圓也是中心對稱圖形. .它的對稱中心就是圓心它的對稱中心就是圓心. .用旋轉(zhuǎn)的方法即可解決這個用旋轉(zhuǎn)的方法即可解決這個問題問題. .【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓的相關(guān)概念圓的相關(guān)概念 圓上任意兩點(diǎn)間的部分叫做圓上任意兩點(diǎn)間的部分叫做圓弧圓弧,簡稱簡稱弧弧. 直徑直徑將圓分

3、成兩部分將圓分成兩部分,每一部分都叫做半每一部分都叫做半圓圓(如弧如弧ABC). 讀一讀讀一讀P88n連接圓上任意兩點(diǎn)間的線段叫做連接圓上任意兩點(diǎn)間的線段叫做弦弦(如弦如弦AB).On經(jīng)過圓心弦叫做經(jīng)過圓心弦叫做直徑直徑(如直徑如直徑AC).ABn以以A,B兩點(diǎn)為端點(diǎn)的兩點(diǎn)為端點(diǎn)的弧弧.記作記作 ,讀作讀作“弧弧AB”.ABn小于半圓的小于半圓的弧弧叫做劣弧叫做劣弧,如記作如記作 (用用兩個字母兩個字母).AmBn大于半圓的大于半圓的弧弧叫做優(yōu)弧叫做優(yōu)弧,如記作如記作 (用三個字母用三個字母).ABCmD【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件AM=BM,垂徑定理垂徑定理 AB是是 O

4、的一條弦的一條弦. 你能發(fā)現(xiàn)圖中有哪些等量關(guān)系你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?與同伴說與同伴說說你的想法和理由說你的想法和理由. 做一做做一做P89n作直徑作直徑CD,使使CDAB,垂足為垂足為M.On右圖是軸對稱圖形嗎右圖是軸對稱圖形嗎?如果是如果是,其對稱軸是什么其對稱軸是什么?n小明發(fā)現(xiàn)圖中有小明發(fā)現(xiàn)圖中有:ABCDMn由由 CD是直徑是直徑 CDAB可推得可推得 AC=BC,AD=BD.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理垂徑定理 如圖如圖,小明的理由是小明的理由是: 連接連接OA,OB,OA,OB, 做一做做一做P90OABCDM則則OA=OB.在在RtOAM和和Rt

5、OBM中中,OA=OB,OM=OM,RtOAM RtOBM.AM=BM.點(diǎn)點(diǎn)A和點(diǎn)和點(diǎn)B關(guān)于關(guān)于CD對稱對稱. O關(guān)于直徑關(guān)于直徑CD對稱對稱,當(dāng)圓沿著直徑當(dāng)圓沿著直徑CD對折時(shí)對折時(shí),點(diǎn)點(diǎn)A與點(diǎn)與點(diǎn)B重合重合,AC和和BC重合重合,AD和和BD重合重合. AC =BC,AD =BD.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理垂徑定理三種語言三種語言 定理定理 垂直于弦的直徑平分弦垂直于弦的直徑平分弦,并且平分弦所的兩條弧并且平分弦所的兩條弧. 老師提示老師提示: 垂徑定理是垂徑定理是圓中一個重圓中一個重要的結(jié)論要的結(jié)論,三三種語言要相種語言要相互轉(zhuǎn)化互轉(zhuǎn)化,形成形成整體整體,才

6、能運(yùn)才能運(yùn)用自如用自如. 想一想想一想 P90OABCDMCDAB,如圖如圖 CD是直徑是直徑,AM=BM, AC =BC, AD=BD.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件CDAB,垂徑定理的逆定理垂徑定理的逆定理 AB是是 O的一條弦的一條弦,且且AM=BM. 你能發(fā)現(xiàn)圖中有哪些等量關(guān)系你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?與同伴說與同伴說說你的想法和理由說你的想法和理由. 做一做做一做P91n過點(diǎn)過點(diǎn)M作直徑作直徑CD.On右圖是軸對稱圖形嗎右圖是軸對稱圖形嗎?如果是如果是,其對稱軸是什么其對稱軸是什么?n小明發(fā)現(xiàn)圖中有小明發(fā)現(xiàn)圖中有:CDn由由 CD是直徑是直徑 AM=BM可推得可推

7、得 AC=BC,AD=BD. MAB平分弦(不是直徑)的直徑垂直于弦平分弦(不是直徑)的直徑垂直于弦,并且平并且平 分弦所對的兩條弧分弦所對的兩條弧.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件n你可以寫出相應(yīng)的命題嗎你可以寫出相應(yīng)的命題嗎?n相信自己是最棒的相信自己是最棒的!垂徑定理的逆定理垂徑定理的逆定理 如圖如圖,在下列五個條件中在下列五個條件中:只要具備其中兩個條件只要具備其中兩個條件,就可推出其余三個結(jié)論就可推出其余三個結(jié)論. 想一想想一想P91OABCDM CD是直徑是直徑, AM=BM, CDAB, AC=BC,AD=BD.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑

8、定理及逆定理垂徑定理及逆定理 想一想想一想P91OABCDM條件結(jié)論命題垂直于弦的直徑平分弦垂直于弦的直徑平分弦,并且平分弦所的兩條弧并且平分弦所的兩條弧.平分弦平分弦(不是直徑不是直徑)的直徑垂直于弦的直徑垂直于弦,并且平并且平 分弦所對的兩條弧分弦所對的兩條弧.平分弦所對的一條弧的直徑平分弦所對的一條弧的直徑,垂直平分弦垂直平分弦,并且平分弦所對的并且平分弦所對的另一條弧另一條弧.弦的垂直平分線經(jīng)過圓心弦的垂直平分線經(jīng)過圓心,并且平分這條弦所對的兩條弧并且平分這條弦所對的兩條弧. 垂直于弦并且平分弦所對的一條弧的直線經(jīng)過圓心垂直于弦并且平分弦所對的一條弧的直線經(jīng)過圓心,并且平并且平分弦和所

9、對的另一條弧分弦和所對的另一條弧.平分弦并且平分弦所對的一條弧的直線經(jīng)過圓心平分弦并且平分弦所對的一條弧的直線經(jīng)過圓心,垂直于弦垂直于弦,并且平分弦所對的另一條弧并且平分弦所對的另一條弧.平分弦所對的兩條弧的直線經(jīng)過圓心平分弦所對的兩條弧的直線經(jīng)過圓心,并且垂直平分弦并且垂直平分弦.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件 6.已知:如圖,在以已知:如圖,在以O(shè)為圓心的兩個同心為圓心的兩個同心圓中,大圓的弦圓中,大圓的弦AB交小圓于交小圓于C,D兩點(diǎn)。兩點(diǎn)。你認(rèn)為你認(rèn)為AC和和BD有什么關(guān)系?為什么?有什么關(guān)系?為什么?證明:過證明:過O作作OEAB,垂足為,垂足為E, 則則AEBE,

10、CEDE。 AECEBEDE 即即 ACBD.ACDBOE5.5.在半徑為在半徑為3030的的OO中,弦中,弦AB=36AB=36,則,則O O到到ABAB的距離是的距離是= = ,OABOAB的余弦值的余弦值= = 。 OABP0.624mm注意:解決有關(guān)弦的問題,過圓心作注意:解決有關(guān)弦的問題,過圓心作弦的垂線,或作垂直于弦的直徑,也弦的垂線,或作垂直于弦的直徑,也是一種常用輔助線的添法是一種常用輔助線的添法【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件挑戰(zhàn)自我挑戰(zhàn)自我垂徑定理的推論垂徑定理的推論 如果圓的兩條弦互相平行如果圓的兩條弦互相平行,那么這兩條弦所平的弧相那么這兩條弦所平的弧相

11、等嗎等嗎? 老師提示老師提示: 這兩條弦在圓中位置有兩種情況這兩條弦在圓中位置有兩種情況:隨堂練習(xí)隨堂練習(xí)P92OABCD1.兩條弦在圓心的同側(cè)兩條弦在圓心的同側(cè)OABCD2.兩條弦在圓心的兩側(cè)兩條弦在圓心的兩側(cè)垂徑定理的推論垂徑定理的推論 圓的兩條平行弦所夾的弧相等圓的兩條平行弦所夾的弧相等.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件試一試試一試P93挑戰(zhàn)自我挑戰(zhàn)自我畫一畫畫一畫 如圖如圖,M,M為為OO內(nèi)的一點(diǎn)內(nèi)的一點(diǎn), ,利用尺規(guī)作一條弦利用尺規(guī)作一條弦AB,AB,使使ABAB過點(diǎn)過點(diǎn)M.M.并且并且AM=BM.AM=BM.OM【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件試一試

12、試一試P93挑戰(zhàn)自我挑戰(zhàn)自我填一填填一填 1、判斷: 垂直于弦的直線平分這條弦,并且平分弦所對的兩條弧. ( ) 平分弦所對的一條弧的直徑一定平分這條弦所對的另一條弧. ( ) 經(jīng)過弦的中點(diǎn)的直徑一定垂直于弦.( ) 圓的兩條弦所夾的弧相等,則這兩條弦平行. ( ) 弦的垂直平分線一定平分這條弦所對的弧. ( )【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件試一試試一試P93挑戰(zhàn)自我挑戰(zhàn)自我畫一畫畫一畫 4.如圖,圓O與矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的長.ABCD0EFGH【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件試一試試一試P93駛向勝利的彼岸

13、挑戰(zhàn)自我挑戰(zhàn)自我填一填填一填 1、判斷:、判斷: 垂直于弦的直線平分這條弦垂直于弦的直線平分這條弦,并且平分弦所對的兩并且平分弦所對的兩條弧條弧. ( ) 平分弦所對的一條弧的直徑一定平分這條弦所對的平分弦所對的一條弧的直徑一定平分這條弦所對的另一條弧另一條弧. ( ) 經(jīng)過弦的中點(diǎn)的直徑一定垂直于弦經(jīng)過弦的中點(diǎn)的直徑一定垂直于弦.( ) 圓的兩條弦所夾的弧相等,則這兩條弦平行圓的兩條弦所夾的弧相等,則這兩條弦平行. ( ) 弦的垂直平分線一定平分這條弦所對的弧弦的垂直平分線一定平分這條弦所對的弧. ( )【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件練習(xí)練習(xí)2:在圓在圓O中,直徑中,直徑C

14、EAB于于 D,OD=4 ,弦,弦AC= , 求圓求圓O的半徑。的半徑。10DCEOAB反思:反思:在在 O中,若中,若 O的半徑的半徑r、 圓心到弦的距離圓心到弦的距離d、弦長、弦長a中,中, 任意知道兩個量,可根據(jù)任意知道兩個量,可根據(jù)定理求出第三個量:定理求出第三個量:CDBAO例例2:如圖,圓:如圖,圓O的弦的弦AB8 , DC2,直徑,直徑CEAB于于D, 求半徑求半徑OC的長。的長。DCEOAB垂徑垂徑直徑直徑MNAB,垂足為垂足為E,交弦交弦CD于點(diǎn)于點(diǎn)F.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件例例3:如圖,已知圓:如圖,已知圓O的直徑的直徑AB與與 弦弦CD相交于相交

15、于G,AECD于于E, BFCD于于F,且圓,且圓O的半徑為的半徑為 10,CD=16 ,求,求AE-BF的長。的長。練習(xí)練習(xí)3:如圖,如圖,CD為圓為圓O的直徑,弦的直徑,弦AB交交CD于于E, CEB=30,DE=9,CE=3,求弦,求弦AB的長。的長。GEFAOBCDEDOCAB圖中相等的線段有圖中相等的線段有 :【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件試一試試一試P93駛向勝利的彼岸挑戰(zhàn)自我挑戰(zhàn)自我畫一畫畫一畫 2.已知:如圖已知:如圖, O 中中,弦弦ABCD,ABCD,直徑直徑MNAB,垂足為垂足為E,交弦交弦CD于點(diǎn)于點(diǎn)F.圖中相等的線段有圖中相等的線段有 : .圖中相等

16、的劣弧有圖中相等的劣弧有: .FEOMNABCD【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件小小 結(jié)結(jié)直徑平分弦直徑平分弦 直徑垂直于弦直徑垂直于弦=直徑平分弦所對的弧直徑平分弦所對的弧 直徑垂直于弦直徑垂直于弦 直徑平分弦(不是直徑)直徑平分弦(不是直徑)直徑平分弦所對的弧直徑平分弦所對的弧 直徑平分弧所對的弦直徑平分弧所對的弦 直徑平分弧直徑平分弧 直徑垂直于弧所對的弦直徑垂直于弧所對的弦=、圓的軸對稱性、圓的軸對稱性、垂徑定理及其逆定理的圖式【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件2. 2. 圓對稱性圓對稱性(2)(2)【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理

17、垂徑定理三種語言三種語言 定理定理 垂直于弦的直徑平分弦垂直于弦的直徑平分弦,并且平分弦所的兩條弧并且平分弦所的兩條弧. 老師提示老師提示: 垂徑定理是垂徑定理是圓中一個重圓中一個重要的結(jié)論要的結(jié)論,三三種語言要相種語言要相互轉(zhuǎn)化互轉(zhuǎn)化,形成形成整體整體,才能運(yùn)才能運(yùn)用自如用自如. 想一想想一想 P90OABCDMCDAB,如圖如圖 CD是直徑是直徑,AM=BM, AC =BC, AD=BD.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理的應(yīng)用垂徑定理的應(yīng)用 例例1 1 如圖,一條公路的轉(zhuǎn)變處是一段圓弧如圖,一條公路的轉(zhuǎn)變處是一段圓弧( (即圖中弧即圖中弧CD,CD,點(diǎn)點(diǎn)O O是弧是

18、弧CDCD的圓心的圓心),),其中其中CD=600m,ECD=600m,E為弧為弧CDCD上的一上的一點(diǎn)點(diǎn), ,且且OECDOECD垂足為垂足為F,EF=90m.F,EF=90m.求這段彎路的半徑求這段彎路的半徑. . 想一想想一想P91n解解: :連接連接OC.OC.OCDEF.)90(,mROFRm則設(shè)彎路的半徑為,CDOE ).(3006002121mCDCF得根據(jù)勾股定理,即,222OFCFOC.90300222RR.545,R得解這個方程.545m這段彎路的半徑約為老師提示老師提示:注意閃爍注意閃爍的三角形的三角形的特點(diǎn)的特點(diǎn).【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件趙州石拱

19、橋趙州石拱橋 1.1300多年前多年前,我國隋朝建造的趙州石拱橋我國隋朝建造的趙州石拱橋(如圖如圖)的橋的橋拱是圓弧形拱是圓弧形,它的跨度它的跨度(弧所對是弦的長弧所對是弦的長)為為 37.4 m,拱高拱高(弧的中點(diǎn)到弦的距離弧的中點(diǎn)到弦的距離,也叫弓形高也叫弓形高)為為7.2m,求橋拱的半求橋拱的半徑徑(精確到精確到0.1m). 隨堂練習(xí)隨堂練習(xí)P92n你是第一你是第一個告訴同個告訴同學(xué)們解題學(xué)們解題方法和結(jié)方法和結(jié)果的嗎?果的嗎?【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件趙州石拱橋趙州石拱橋隨堂練習(xí)隨堂練習(xí)P92解:如圖,用解:如圖,用 表示橋拱,表示橋拱, 所在圓的圓心為所在圓的圓

20、心為O,半徑為,半徑為Rm,經(jīng)過圓心經(jīng)過圓心O作弦作弦AB的垂線的垂線OD,D為垂足,與為垂足,與 相交于點(diǎn)相交于點(diǎn)C.根根據(jù)垂徑定理,據(jù)垂徑定理,D是是AB的中點(diǎn),的中點(diǎn),C是是 的中點(diǎn),的中點(diǎn),CD就是拱高就是拱高.由題設(shè)由題設(shè)ABABABAB, 2 . 7, 4 .37CDABABAD21, 7 .184 .3721DCOCOD. 2 . 7 R在在RtOAD中,由勾股定理,得中,由勾股定理,得,222ODADOA.)2 . 7(7 .18222RR即解得解得 R27.9(m).答:趙州石拱橋的橋拱半徑約為答:趙州石拱橋的橋拱半徑約為27.9m.OABCRD37.47.2【最新】九年級數(shù)

21、學(xué) 圓的對稱性 課件人教版 課件船能過拱橋嗎船能過拱橋嗎 2 . 如圖如圖,某地有一圓弧形拱橋某地有一圓弧形拱橋,橋下水面寬為橋下水面寬為7.2米米,拱頂拱頂高出水面高出水面2.4米米.現(xiàn)有一艘寬現(xiàn)有一艘寬3米、船艙頂部為長方形并米、船艙頂部為長方形并高出水面高出水面2米的貨船要經(jīng)過這里米的貨船要經(jīng)過這里,此貨船能順利通過這此貨船能順利通過這座拱橋嗎?座拱橋嗎? 相信自己能獨(dú)立相信自己能獨(dú)立完成解答完成解答. 做一做做一做P補(bǔ)補(bǔ)【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件船能過拱橋嗎船能過拱橋嗎 解解:如圖如圖,用用 表示橋拱表示橋拱, 所在圓的圓心為所在圓的圓心為O,半徑為半徑為Rm,經(jīng)

22、過圓心經(jīng)過圓心O作弦作弦AB的垂線的垂線OD,D為垂足為垂足,與與 相交于點(diǎn)相交于點(diǎn)C.根根據(jù)垂徑定理據(jù)垂徑定理,D是是AB的中點(diǎn)的中點(diǎn),C是是 的中點(diǎn)的中點(diǎn),CD就是拱高就是拱高.由題設(shè)得由題設(shè)得 做一做做一做P補(bǔ)補(bǔ)ABABABAB. 5 . 121, 4 . 2, 2 . 7MNHNCDABABAD21, 6 . 32 . 721DCOCOD. 4 . 2 R在在RtOAD中,由勾股定理,得中,由勾股定理,得,222ODADOA.)4 . 2(6 . 3222RR即解得解得 R3.9(m). 在在RtONH中,由勾股定理,得中,由勾股定理,得,22HNONOH. 6 . 35 . 19 .

23、 322OH即. 21 . 25 . 16 . 3DH此貨船能順利通過這座拱橋此貨船能順利通過這座拱橋.【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理垂徑定理三角形三角形在在a,d,r,ha,d,r,h中,已知其中任意兩中,已知其中任意兩個量個量, ,可以求出其它兩個量可以求出其它兩個量. . 想一想想一想 P補(bǔ)補(bǔ)EOABDCd + h = rd + h = r222)2(adr已知:如圖,直徑已知:如圖,直徑CDAB,垂足為,垂足為E .若半徑若半徑R = 2 ,AB = , 求求OE、DE 的長的長. 若半徑若半徑R = 2 ,OE = 1 ,求,求AB、DE 的長的長.由由 、

24、兩題的啟發(fā),你還能編出什么其他問題?兩題的啟發(fā),你還能編出什么其他問題?32【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理的應(yīng)用垂徑定理的應(yīng)用 在直徑為在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示面如圖所示.若油面寬若油面寬AB = 600mm,求油的最大深,求油的最大深度度. 做一做做一做P補(bǔ)補(bǔ)BAOED 600【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件垂徑定理的逆應(yīng)用垂徑定理的逆應(yīng)用 在直徑為在直徑為650mm的圓柱形油槽內(nèi)裝入一些油后,截的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示面如圖所示.若油面寬若油面寬AB = 600mm,求

25、油的最大深,求油的最大深度度. 想一想想一想P補(bǔ)補(bǔ)BAO600 650DC【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件挑戰(zhàn)自我挑戰(zhàn)自我 1、要把實(shí)際問題轉(zhuǎn)變成一個數(shù)學(xué)問題來解決、要把實(shí)際問題轉(zhuǎn)變成一個數(shù)學(xué)問題來解決. 2、熟練地運(yùn)用垂徑定理及其推論、勾股定理,并、熟練地運(yùn)用垂徑定理及其推論、勾股定理,并用方程的思想來解決問題用方程的思想來解決問題.隨堂練習(xí)隨堂練習(xí)P補(bǔ)補(bǔ)n3、對于一個圓中的弦長、對于一個圓中的弦長a、圓心到弦的距離、圓心到弦的距離d、圓半徑、圓半徑r、弓形、弓形高高h(yuǎn),這四個量中,只要已知其中任意兩個量,就可以求出另外,這四個量中,只要已知其中任意兩個量,就可以求出另外兩個

26、量,如圖有:兩個量,如圖有:d + h = r222)2(adrhda2O【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件2. 2. 圓對稱性圓對稱性(3)(3)【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓的對稱性及圓的對稱性及特性特性 圓是軸對稱圖形圓是軸對稱圖形, ,圓的對稱軸是任意一條經(jīng)過圓圓的對稱軸是任意一條經(jīng)過圓心的直線心的直線, ,它有無數(shù)條對稱軸它有無數(shù)條對稱軸. . 想一想想一想P94n圓也是中心對稱圖形圓也是中心對稱圖形, ,它的對稱中心就是圓心它的對稱中心就是圓心. .n用旋轉(zhuǎn)的方法可以得到用旋轉(zhuǎn)的方法可以得到: :n一個圓繞著它的圓心旋轉(zhuǎn)任意一一個圓繞著它的圓心旋轉(zhuǎn)

27、任意一個角度個角度, ,都能與原來的圖形重合都能與原來的圖形重合. .n這是圓特有的一個性質(zhì)這是圓特有的一個性質(zhì): :圓的圓的旋轉(zhuǎn)不變性旋轉(zhuǎn)不變性O(shè)【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件AB圓心角圓心角 圓心角圓心角 頂點(diǎn)在圓心的角頂點(diǎn)在圓心的角(如如AOB). 弦心距弦心距 過圓心作弦的垂線過圓心作弦的垂線,圓心與垂足之間的距離圓心與垂足之間的距離(如線段如線段OD). 如圖如圖,在在 O中中,分別作相等的圓心角和分別作相等的圓心角和AOB和和AOB, 將其將其中的一個旋轉(zhuǎn)一個角度中的一個旋轉(zhuǎn)一個角度,使得使得OA和和OA重合重合. 想一想想一想 P94n 你能發(fā)現(xiàn)那些等量關(guān)系你能

28、發(fā)現(xiàn)那些等量關(guān)系?說一說你的理由說一說你的理由.OOABDOABDABABABABABABDDDDDDABD【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓心角圓心角 圓心角圓心角, 弧弧,弦弦,弦心距之間的關(guān)系定理弦心距之間的關(guān)系定理 如圖如圖,如果在兩個等圓如果在兩個等圓 O和和 O中中,分別作相等的圓心角和分別作相等的圓心角和AOB和和AOB,固定圓心固定圓心,將其中的一個旋轉(zhuǎn)一個角度將其中的一個旋轉(zhuǎn)一個角度,使使得得OA和和OA重合重合. 想一想想一想 P94OABOABn 你又能發(fā)現(xiàn)那些等量關(guān)系你又能發(fā)現(xiàn)那些等量關(guān)系?說一說你的理由說一說你的理由.OABOABABABABABABABDDDD【最新】九年級數(shù)學(xué) 圓的對稱性 課件人教版 課件圓心角圓心角, 弧弧,弦弦,弦心距之間的關(guān)系定理弦心距之間的關(guān)系定理 在在同圓同圓或或等圓等圓中中, ,相等的圓心角所對的弧相等所對的相等的圓心角所對的弧相等所對的弦相等弦相等, ,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論