




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一、反函數(shù)的導(dǎo)數(shù)一、反函數(shù)的導(dǎo)數(shù)定理定理.)(1)(,)(,0)()(xxfIxfyyIyxxy 且有且有內(nèi)也可導(dǎo)內(nèi)也可導(dǎo)在對(duì)應(yīng)區(qū)間在對(duì)應(yīng)區(qū)間那末它的反函數(shù)那末它的反函數(shù)且且內(nèi)單調(diào)、可導(dǎo)內(nèi)單調(diào)、可導(dǎo)在某區(qū)間在某區(qū)間如果函數(shù)如果函數(shù)即即 反函數(shù)的導(dǎo)數(shù)等于直接函數(shù)導(dǎo)數(shù)的倒數(shù)反函數(shù)的導(dǎo)數(shù)等于直接函數(shù)導(dǎo)數(shù)的倒數(shù).證證,xIx 任取任取xx 以以增增量量給給的單調(diào)性可知的單調(diào)性可知由由)(xfy , 0 y于是有于是有,1yxxy ,)(連續(xù)連續(xù)xf),0(0 xy0)( y 又知又知xyxfx 0lim)(yxy 1lim0)(1y .)(1)(yxf 即即), 0(xIxxx 例例1 1.arcsi
2、n的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xy 解解,)2,2(sin內(nèi)單調(diào)、可導(dǎo)內(nèi)單調(diào)、可導(dǎo)在在 yIyx, 0cos)(sin yy且且內(nèi)有內(nèi)有在在)1 , 1( xI)(sin1)(arcsin yxycos1 y2sin11 .112x .11)(arccos2xx 同理可得同理可得;11)(arctan2xx )(arcsin x.11)cot(2xx arc例例2 2.log的的導(dǎo)導(dǎo)數(shù)數(shù)求求函函數(shù)數(shù)xya , 0ln)( aaayy且且,), 0(內(nèi)有內(nèi)有在在 xI)(1)(log yaaxaayln1 .ln1ax 解解,),(內(nèi)單調(diào)、可導(dǎo)內(nèi)單調(diào)、可導(dǎo)在在 yyIax特別地特別地.1)(lnxx
3、 二、復(fù)合函數(shù)的求導(dǎo)法則二、復(fù)合函數(shù)的求導(dǎo)法則定理定理).()(,)(,)()(,)(0000000 xufdxdyxxfyxuufyxxuxx 且其導(dǎo)數(shù)為且其導(dǎo)數(shù)為可導(dǎo)可導(dǎo)在點(diǎn)在點(diǎn)則復(fù)合函數(shù)則復(fù)合函數(shù)可導(dǎo)可導(dǎo)在點(diǎn)在點(diǎn)而而可導(dǎo)可導(dǎo)在點(diǎn)在點(diǎn)如果函數(shù)如果函數(shù)即即 因變量對(duì)自變量求導(dǎo)因變量對(duì)自變量求導(dǎo), ,等于因變量對(duì)中間變等于因變量對(duì)中間變量求導(dǎo)量求導(dǎo), ,乘以中間變量對(duì)自變量求導(dǎo)乘以中間變量對(duì)自變量求導(dǎo).(.(鏈?zhǔn)椒▌t鏈?zhǔn)椒▌t) )證證,)(0可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)由由uufy )(lim00ufuyu )0lim()(00 uufuy故故uuufy )(0則則xyx 0lim)(lim00 xuxu
4、ufx xuxuufxxx 0000limlimlim)().()(00 xuf 推廣推廣),(),(),(xvvuufy 設(shè)設(shè).)(dxdvdvdududydxdyxfy 的導(dǎo)數(shù)為的導(dǎo)數(shù)為則復(fù)合函數(shù)則復(fù)合函數(shù) 例例3 3.sinln的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xy 解解.sin,lnxuuy dxdududydxdy xucos1 xxsincos xcot 例例4 4.)1(102的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù) xy解解)1()1(10292 xxdxdyxx2)1(1092 .)1(2092 xx例例5 5.arcsin22222的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)axaxaxy 解解)arcsin2()2(
5、222 axaxaxy2222222222121xaaxaxxa .22xa )0( a例例6 6.)2(21ln32的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù) xxxy解解),2ln(31)1ln(212 xxy)2(31211212 xxxy)2(3112 xxx例例7 7.1sin的導(dǎo)數(shù)的導(dǎo)數(shù)求函數(shù)求函數(shù)xey 解解)1(sin1sin xeyx)1(1cos1sin xxex.1cos11sin2xexx 三、小結(jié)三、小結(jié)反函數(shù)的求導(dǎo)法則反函數(shù)的求導(dǎo)法則(注意成立條件)(注意成立條件);復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)法則(注意函數(shù)的復(fù)合過(guò)程(注意函數(shù)的復(fù)合過(guò)程,合理分解正確使用鏈合理分解正確使用鏈導(dǎo)法
6、)導(dǎo)法);已能求導(dǎo)的函數(shù)已能求導(dǎo)的函數(shù):可分解成基本初等函數(shù)可分解成基本初等函數(shù),或常或常數(shù)與基本初等函數(shù)的和、差、積、商數(shù)與基本初等函數(shù)的和、差、積、商.思考題思考題 若若)(uf在在0u不可導(dǎo),不可導(dǎo),)(xgu 在在0 x可導(dǎo),且可導(dǎo),且)(00 xgu ,則,則)(xgf在在0 x處處( )(1)必可導(dǎo);)必可導(dǎo);(2)必不可導(dǎo);)必不可導(dǎo);(3)不一定可導(dǎo);)不一定可導(dǎo);思考題解答思考題解答正確地選擇是正確地選擇是(3)例例|)(uuf 在在 處不可導(dǎo),處不可導(dǎo),0 u取取xxgusin)( 在在 處可導(dǎo),處可導(dǎo),0 x|sin|)(xxgf 在在 處不可導(dǎo),處不可導(dǎo),0 x )1(
7、取取4)(xxgu 在在 處可導(dǎo),處可導(dǎo),0 x44|)(xxxgf 在在 處可導(dǎo),處可導(dǎo),0 x )2(一、一、 填空題:填空題:1 1、 設(shè)設(shè)4)52( xy, ,則則y = =_._.2 2、 設(shè)設(shè)xy2sin , ,則則y = =_._.3 3、 設(shè)設(shè))arctan(2xy , ,則則y = =_._.4 4、 設(shè)設(shè)xycosln , ,則則y = =_._.5 5、 設(shè)設(shè)xxy2tan10 ,則,則y = =_._.6 6、 設(shè)設(shè))(xf可導(dǎo),且可導(dǎo),且)(2xfy , 則則dxdy= =_._.7 7、 設(shè)設(shè)xkexftan)( , ,則則)(xf = =_, 若若ef 4 ,則,
8、則 k_._.練練 習(xí)習(xí) 題題二、二、 求下列函數(shù)的導(dǎo)數(shù):求下列函數(shù)的導(dǎo)數(shù):1 1、 xy1arccos ; 2 2、xxy2sin ;3 3、)ln(22xaxy ;4 4、)cotln(cscxxy ;5 5、2)2(arcsinxy ; 6 6、xeyarctan ;7 7、xxyarccosarcsin ; 8 8、xxy 11arcsin. .三、三、 設(shè)設(shè))(xf,)(xg可導(dǎo),且可導(dǎo),且0)()(22 xgxf, ,求函數(shù)求函數(shù))()(22xgxfy 的導(dǎo)數(shù)的導(dǎo)數(shù) . .四四、設(shè)設(shè))(xf在在0 x處處可可導(dǎo)導(dǎo),且且0)0( f,0)0( f, ,又又)(xF在在0 x處處可可導(dǎo)導(dǎo),證證明明 )(xfF在在0 x處處也也可可導(dǎo)導(dǎo) . .一、一、1 1、3)52(8 x; 2 2、x2sin; 3 3、412xx ; 4 4、xtan ; 5 5、)2sec22(tan10ln1022tanxxxxx ; 6 6、)(22xfx ; 7 7、xxkekxk21tansectan , ,21. .二、二、1 1、122 xxx; 2 2、22sin2cos2xxxx ;3 3、221x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 購(gòu)買機(jī)票服務(wù)合同協(xié)議
- 貨款沖抵協(xié)議書模板
- 請(qǐng)家庭保姆合同協(xié)議
- 貨運(yùn)輪胎銷售合同協(xié)議
- 2025年大學(xué)物理考試必看試題及答案
- 2025年大學(xué)化學(xué)問(wèn)題發(fā)現(xiàn)試題及答案
- 《第02節(jié) 原子的結(jié)構(gòu)》教學(xué)設(shè)計(jì)
- 新時(shí)代好少年成長(zhǎng)之路
- 2025年考研數(shù)學(xué)模擬試題及答案解析
- 2019年全國(guó)高中數(shù)學(xué)聯(lián)賽B卷一試解答
- 華大新高考聯(lián)盟2025屆高三4月教學(xué)質(zhì)量測(cè)評(píng)化學(xué)+答案
- 2025年中國(guó)防曬護(hù)理洗發(fā)露市場(chǎng)調(diào)查研究報(bào)告
- 2025-2030中國(guó)太陽(yáng)能照明系統(tǒng)行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 國(guó)家電網(wǎng)招聘考試(金融類)專業(yè)考試歷年真題及答案
- 鐵路雨季三防培訓(xùn)課件
- 國(guó)開(kāi)(內(nèi)蒙古)2024年《漢語(yǔ)中的中國(guó)文化》形成性考核1-3終結(jié)性考核答案
- 靜療護(hù)理典型案例
- 小學(xué)六年級(jí)下冊(cè)綜合實(shí)踐.策劃小學(xué)畢業(yè)典禮--(14張)ppt
- 沈萍微生物學(xué)第七章
- 鋼箱梁運(yùn)輸及安裝施工方案
- 組織環(huán)境、相關(guān)方分析及措施一覽表
評(píng)論
0/150
提交評(píng)論