




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念一、高階導(dǎo)數(shù)的概念機(jī)動 目錄 上頁 下頁 返回 結(jié)束 第二章 一、高階導(dǎo)數(shù)的概念一、高階導(dǎo)數(shù)的概念)(tss 速度即sv加速度,ddtsv tvadd)dd(ddtst即)( sa引例引例:變速直線運(yùn)動機(jī)動 目錄 上頁 下頁 返回 結(jié)束 定義定義. 若函數(shù))(xfy 的導(dǎo)數(shù))(xfy可導(dǎo),或,dd22xy即)( yy或)dd(dddd22xyxxy類似地 , 二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù) ,1n階導(dǎo)數(shù)的導(dǎo)數(shù)稱為 n 階導(dǎo)數(shù) ,y ,)4(y)(,ny或,dd33xy,dd44xynnxydd,)(xf的二階導(dǎo)數(shù)
2、二階導(dǎo)數(shù) , 記作y )(xf 的導(dǎo)數(shù)為依次類推 ,分別記作則稱機(jī)動 目錄 上頁 下頁 返回 結(jié)束 設(shè),2210nnxaxaxaay求.)(ny解解:1ayxa221nnxan 212 ayxa3232) 1(nnxann依次類推 ,nnany!)(233xa例例1.思考思考: 設(shè), )(為任意常數(shù)xy ?)(nynnxnx) 1()2)(1()()(問可得機(jī)動 目錄 上頁 下頁 返回 結(jié)束 nx)1 ( ,3xaeay 例例2. 設(shè)求解解:特別有:解解:! ) 1( n規(guī)定 0 ! = 1思考思考:,xaey .)(ny,xaeay ,2xaeay xanneay)(xnxee)()(例例3
3、. 設(shè), )1(lnxy求.)(ny,11xy,)1 (12xy ,)1 (21) 1(32xy )(ny1) 1(n, )1(lnxy)(nyxy11 ynxn)1 (! ) 1(2)1 (1x,機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例4. 設(shè),sinxy 求.)(ny解解: xycos)sin(2x)cos(2 xy)sin(22x)2sin(2x)2cos(2 xy)3sin(2x一般地 ,xxnsin()(sin)(類似可證:xxncos()(cos)()2n)2n機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例5 . 設(shè)bxeyxasin解解:bxaeyxasin)cossin(xbbxba
4、exa求為常數(shù) , ),(ba.)(nybxbexacos)cossin(222222xbbabxbbaabacossinxae)sin(22bxba)arctan(ab22bay )sin(bxaexa222)()(nnbayxaeba22)arctan(ab)2sin(22bxba)sin(nbxexa)cos(bxbexa機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例6. 設(shè),3)(23xxxxf求使)0()(nf存在的最高分析分析: )(xf0 x,43x0 x,23xxxfx02lim)0(300 xxfx04lim)0(3000 x0 x)(xf,122x,62x )0(fxxx206l
5、im0 )0(fxxx2012lim0 )(xf但是,12)0( f,24)0( f)0(f 不存在 ._n2又0 x,24x0 x,12x階數(shù)機(jī)動 目錄 上頁 下頁 返回 結(jié)束 二、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則都有 n 階導(dǎo)數(shù) , 則)()(. 1nvu )()(nnvu)()(. 2nuC)(nuC(C為常數(shù))()(. 3nvuvun)(!2) 1( nn!) 1() 1(kknnn vun)2()()(kknvu)(nvu萊布尼茲萊布尼茲(Leibniz) 公式公式)(xuu 及)(xvv 設(shè)函數(shù)vunn) 1(推導(dǎo) 目錄 上頁 下頁 返回 結(jié)束 vu 3)(vuvuvu)(
6、 vu)(vuvuvuvu 2vu )( vuvu vu 3vu 用數(shù)學(xué)歸納法可證萊布尼茲公式萊布尼茲公式成立 .機(jī)動 目錄 上頁 下頁 返回 結(jié)束 例例7. ,22xexy 求.)20(y解解: 設(shè),22xveux則xkkeu2)(2,2xv ,2 v0)(kv代入萊布尼茲公式 , 得)20(yxe22022xxe219220 x2!219202xe2202)9520(2xxxe2182)20,2,1(k)20,3(k機(jī)動 目錄 上頁 下頁 返回 結(jié)束 0!2) 1() 1(nynn)(nyn例例8. 設(shè),arctanxy 求).0()(ny解解:,112xy即1)1 (2yx用萊布尼茲公式
7、求 n 階導(dǎo)數(shù))1 (2xx22令,0 x得)0() 1()0() 1() 1(nnynny),2, 1(n由,0)0(y得,0)0( y,0)0()4(y,)0() 12( my)0() 12(2) 12(mymm)0(! )2() 1(ymm0)0()2(my ) 1(ny12, ! )2() 1(2,0)0()(mnmmnymn即), 2, 1 , 0(m由, 1)0( y得)0(! )2() 1()0() 12(ymymm機(jī)動 目錄 上頁 下頁 返回 結(jié)束 內(nèi)容小結(jié)內(nèi)容小結(jié)(1) 逐階求導(dǎo)法(2) 利用歸納法(3) 間接法 利用已知的高階導(dǎo)數(shù)公式(4) 利用萊布尼茲公式高階導(dǎo)數(shù)的求法)
8、(1nxa1)(!) 1(nnxan)(1nxa1)(!nxan如,機(jī)動 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)xy1211)()1 (!) 1(2nnnxnyxxxy11123,)1 (!1)(nxnynn1. 如何求下列函數(shù)的 n 階導(dǎo)數(shù)?xxy11) 1 (xxy1)2(3解解: 解解: 機(jī)動 目錄 上頁 下頁 返回 結(jié)束 2312xxy1121xxy11)() 1(1)2(1!) 1(nnnnxxny(3)12) 1)(2(1xBxAxx提示提示: 令)2(xA原式2x) 1(xB原式1x11機(jī)動 目錄 上頁 下頁 返回 結(jié)束 xxy66cossin)4(3232)(cos
9、)(sinxxyxxxx4224coscossinsin222)cos(sinxx x2sin431283)(nyn433ba)(ba )(22babax4cos8385)4cos(2nx 22cos1sin2xx22cossin3解解:機(jī)動 目錄 上頁 下頁 返回 結(jié)束 1)( !nxfn2. (填空題) (1) 設(shè),cos)23()(1622xnxxxf則)2()(nf)(xf16cos) 1(2xxn)()(xfn16cos) 1(2xxn提示提示:各項(xiàng)均含因子 ( x 2 )nx)2( ! n22!n(2) 已知)(xf任意階可導(dǎo), 且2n時)()(xfn提示提示:,)()(2xfxf則當(dāng) )(xf)()(2xfxf3)( !2xf )(xf)()(3!22xfxf4)( !3xf機(jī)動 目錄 上頁 下頁 返回 結(jié)束 3. 試從 yyx1dd導(dǎo)出.)(dd322yyyx 解:解:yxyyxdddddd22 y1xddyxdd2)(yy y13)(yy 同樣可求33ddyx(見 P101 題4 ) 作業(yè)作業(yè)第四節(jié) 目錄 上頁 下頁 返回 結(jié)束 P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3)解解: 設(shè))(sin2xfxy 求,y 其中 f 二階可導(dǎo). y yxxfxcos)(sin2)(sin2xf備用題備用題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期末綜合復(fù)習(xí)卷(二)(試卷)部編版語文五年級上冊
- 中國人民大學(xué)應(yīng)用經(jīng)濟(jì)學(xué)院招聘筆試真題2024
- 南充市經(jīng)濟(jì)和信息化局遴選公務(wù)員筆試真題2024
- 福建路信交通建設(shè)監(jiān)理有限公司招聘筆試真題2024
- 北京燃料物流有限公司系統(tǒng)招聘筆試真題2024
- 企業(yè)產(chǎn)品發(fā)布會活動流程設(shè)計(jì)
- 我向往的地方:溫馨的咖啡館時光范文
- 小學(xué)生態(tài)文明勞動教育計(jì)劃
- 診所院感管理與應(yīng)急預(yù)案
- 初中地理課后復(fù)習(xí)計(jì)劃
- GB/T 20424-2025重有色金屬精礦產(chǎn)品中有害元素的限量規(guī)范
- 2025年蘭考三農(nóng)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年(2019-2024年)真題考點(diǎn)試卷含答案解析
- 2025電動自行車集中充電設(shè)施第2部分:充換電服務(wù)信息交換
- 輸油管道安全培訓(xùn)
- 2025美國急性冠脈綜合征(ACS)患者管理指南解讀課件
- 統(tǒng)編歷史七年級下冊(2024版)第7課-隋唐時期的科技與文化【課件】f
- 2025年河南省高校畢業(yè)生“三支一扶”招募1100人高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年國家林業(yè)局西北林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院招聘4人歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 橋梁檢測報告模板
- 血管導(dǎo)管相關(guān)感染預(yù)防與控制指南課件
- 產(chǎn)品防錯措施一覽表
評論
0/150
提交評論