版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中數(shù)學(xué)競(jìng)賽講義(十八) 組合一、方法與例題1抽屜原理。例1 設(shè)整數(shù)n4,a1,a2,an是區(qū)間(0,2n)內(nèi)n個(gè)不同的整數(shù),證明:存在集合a1,a2,an的一個(gè)子集,它的所有元素之和能被2n整除。證明 (1)若na1,a2,an,則n個(gè)不同的數(shù)屬于n-1個(gè)集合1,2n-1,2,2n-2,n-1,n+1。由抽屜原理知其中必存在兩個(gè)數(shù)ai,aj(ij)屬于同一集合,從而ai+aj=2n被2n整除;(2)若na1,a2,an,不妨設(shè)an=n,從a1,a2,an-1(n-13)中任意取3個(gè)數(shù)ai, aj, ak(ai,<aj< ak),則
2、aj-ai與ak-ai中至少有一個(gè)不被n整除,否則ak-ai=(ak-aj)+(aj-ai)2n,這與ak(0,2n)矛盾,故a1,a2,an-1中必有兩個(gè)數(shù)之差不被n整除;不妨設(shè)a1與a2之差(a2-a1>0)不被n整除,考慮n個(gè)數(shù)a1,a2,a1+a2,a1+a2+a3,a1+a2+an-1。)若這n個(gè)數(shù)中有一個(gè)被n整除,設(shè)此數(shù)等于kn,若k為偶數(shù),則結(jié)論成立;若k為奇數(shù),則加上an=n知結(jié)論成立。)若這n個(gè)數(shù)中沒有一個(gè)被n整除,則它們除以n的余數(shù)只能取1,2,n-1這n-1個(gè)值,由抽屜原理知其中必有兩個(gè)數(shù)除以n的余數(shù)相同,它們之差被n整除,而a2-a1不被n整除,故這個(gè)差必為ai,
3、 aj, ak-1中若干個(gè)數(shù)之和,同)可知結(jié)論成立。2極端原理。例2 在n×n的方格表的每個(gè)小方格內(nèi)寫有一個(gè)非負(fù)整數(shù),并且在某一行和某一列的交叉點(diǎn)處如果寫有0,那么該行與該列所填的所有數(shù)之和不小于n。證明:表中所有數(shù)之和不小于。證明 計(jì)算各行的和、各列的和,這2n個(gè)和中必有最小的,不妨設(shè)第m行的和最小,記和為k,則該行中至少有n-k個(gè)0,這n-k個(gè)0所在的各列的和都不小于n-k,從而這n-k列的數(shù)的總和不小于(n-k)2,其余各列的數(shù)的總和不小于k2,從而表中所有數(shù)的總和不小于(n-k)2+k23.不變量原理。俗話說,變化的是現(xiàn)象,不變的是本質(zhì),某一事情反復(fù)地
4、進(jìn)行,尋找不變量是一種策略。例3 設(shè)正整數(shù)n是奇數(shù),在黑板上寫下數(shù)1,2,2n,然后取其中任意兩個(gè)數(shù)a,b,擦去這兩個(gè)數(shù),并寫上|a-b|。證明:最后留下的是一個(gè)奇數(shù)。證明 設(shè)S是黑板上所有數(shù)的和,開始時(shí)和數(shù)是S=1+2+2n=n(2n+1),這是一個(gè)奇數(shù),因?yàn)閨a-b|與a+b有相同的奇偶性,故整個(gè)變化過程中S的奇偶性不變,故最后結(jié)果為奇數(shù)。例4 數(shù)a1, a2,an中每一個(gè)是1或-1,并且有S=a1a2a3a4+ a2a3a4a5+ana1a2a3=0. 證明:4|n.證明 如果把a(bǔ)1, a2,an中任意一個(gè)ai換成-ai,因?yàn)橛?個(gè)循環(huán)相鄰
5、的項(xiàng)都改變符號(hào),S模4并不改變,開始時(shí)S=0,即S0,即S0(mod4)。經(jīng)有限次變號(hào)可將每個(gè)ai都變成1,而始終有S0(mod4),從而有n0(mod4),所以4|n。4構(gòu)造法。例5 是否存在一個(gè)無窮正整數(shù)數(shù)列a1,<a2<a3<,使得對(duì)任意整數(shù)A,數(shù)列中僅有有限個(gè)素?cái)?shù)。證明 存在。取an=(n!)3即可。當(dāng)A=0時(shí),an中沒有素?cái)?shù);當(dāng)|A|2時(shí),若n|A|,則an+A均為|A|的倍數(shù)且大于|A|,不可能為素?cái)?shù);當(dāng)A=±1時(shí),an±1=(n!±1)?(n!)2±n!+1,當(dāng)3時(shí)均為合數(shù)。從而當(dāng)A為整數(shù)時(shí),(n!
6、)3+A中只有有限個(gè)素?cái)?shù)。例6 一個(gè)多面體共有偶數(shù)條棱,試證:可以在它的每條棱上標(biāo)上一個(gè)箭頭,使得對(duì)每個(gè)頂點(diǎn),指向它的箭頭數(shù)目是偶數(shù)。證明 首先任意給每條棱一個(gè)箭頭,如果此時(shí)對(duì)每個(gè)頂點(diǎn),指向它的箭頭數(shù)均為偶數(shù),則命題成立。若有某個(gè)頂點(diǎn)A,指向它的箭頭數(shù)為奇數(shù),則必存在另一個(gè)頂點(diǎn)B,指向它的箭頭數(shù)也為奇數(shù)(因?yàn)槔饪倲?shù)為偶數(shù)),對(duì)于頂點(diǎn)A與B,總有一條由棱組成的“路徑”連結(jié)它們,對(duì)該路徑上的每條棱,改變它們箭頭的方向,于是對(duì)于該路徑上除A,B外的每個(gè)頂點(diǎn),指向它的箭頭數(shù)的奇偶性不變,而對(duì)頂點(diǎn)A,B,指向它的箭頭數(shù)變成了偶數(shù)。如果這時(shí)仍有頂點(diǎn),指向它的箭頭數(shù)為奇數(shù),那么重復(fù)上
7、述做法,又可以減少兩個(gè)這樣的頂點(diǎn),由于多面體頂點(diǎn)數(shù)有限,經(jīng)過有限次調(diào)整,總能使和是對(duì)每個(gè)頂點(diǎn),指向它的箭頭數(shù)為偶數(shù)。命題成立。5染色法。例7 能否在5×5方格表內(nèi)找到一條線路,它由某格中心出發(fā),經(jīng)過每個(gè)方格恰好一次,再回到出發(fā)點(diǎn),并且途中不經(jīng)過任何方格的頂點(diǎn)?解 不可能。將方格表黑白相間染色,不妨設(shè)黑格為13個(gè),白格為12個(gè),如果能實(shí)現(xiàn),因黑白格交替出現(xiàn),黑白格數(shù)目應(yīng)相等,得出矛盾,故不可能。6凸包的使用。給定平面點(diǎn)集A,能蓋住A的最小的凸圖形,稱為A的凸包。例8 試證:任何不自交的五邊形都位于它的某條邊的同一側(cè)。證明 五邊形的凸五包是
8、凸五邊形、凸四邊形或者是三角形,凸包的頂點(diǎn)中至少有3點(diǎn)是原五邊形的頂點(diǎn)。五邊形共有5個(gè)頂點(diǎn),故3個(gè)頂點(diǎn)中必有兩點(diǎn)是相鄰頂點(diǎn)。連結(jié)這兩點(diǎn)的邊即為所求。7賦值方法。例9 由2×2的方格紙去掉一個(gè)方格余下的圖形稱為拐形,用這種拐形去覆蓋5×7的方格板,每個(gè)拐形恰覆蓋3個(gè)方格,可以重疊但不能超出方格板的邊界,問:能否使方格板上每個(gè)方格被覆蓋的層數(shù)都相同?說明理由。解 將5×7方格板的每一個(gè)小方格內(nèi)填寫數(shù)-2和1。如圖18-1所示,每個(gè)拐形覆蓋的三個(gè)數(shù)之和為非負(fù)。因而無論用多少個(gè)拐形覆蓋多少次,蓋住的所有數(shù)字之和都是非負(fù)的。另一方面,方格板上數(shù)字的總
9、和為12×(-2)+23×1=-1,當(dāng)被覆蓋K層時(shí),蓋住的數(shù)字之和等于-K,這表明不存在滿足題中要求的覆蓋。-21-21-21-21111111-21-21-21-21111111-21-21-21-2 8圖論方法。例10 生產(chǎn)由六種顏色的紗線織成的雙色布,在所生產(chǎn)的雙色布中,每種顏色的紗線至少與其他三種顏色的紗線搭配過。證明:可以挑出三種不同的雙色布,它們包含所有的顏色。證明 用點(diǎn)A1,A2,A3,A4,A5,A6表示六種顏色,若兩種顏色的線搭配過,則在相應(yīng)的兩點(diǎn)之間連一條邊。由已知,每個(gè)頂點(diǎn)至少連出三條邊。命題等價(jià)于由這些邊和點(diǎn)構(gòu)成的圖
10、中有三條邊兩兩不相鄰(即無公共頂點(diǎn))。因?yàn)槊總€(gè)頂點(diǎn)的次數(shù)3,所以可以找到兩條邊不相鄰,設(shè)為A1A2,A3A4。(1)若A5與A6連有一條邊,則A1A2,A3A4,A5A6對(duì)應(yīng)的三種雙色布滿足要求。(2)若A5與A6之間沒有邊相連,不妨設(shè)A5和A1相連,A2與A3相連,若A4和A6相連,則A1A2,A3A4,A5A6對(duì)應(yīng)的雙色布滿足要求;若A4與A6不相連,則A6與A1相連,A2與A3相連,A1A5,A2A6,A3A4對(duì)應(yīng)的雙色布滿足要求。綜上,命題得證。二、習(xí)題精選1藥房里有若干種藥,其中一部分藥是烈性的。藥劑師用這些藥配成68副藥方,每副藥方中恰有5種藥,其中至少有一種是烈性的,并且使得任選
11、3種藥恰有一副藥方包含它們。試問:全部藥方中是否一定有一副藥方至少含有4種烈性藥?(證明或否定)221個(gè)女孩和21個(gè)男孩參加一次數(shù)學(xué)競(jìng)賽,(1)每一個(gè)參賽者最多解出6道題;(2)對(duì)每一個(gè)女孩和每一個(gè)男孩至少有一道題被這一對(duì)孩子都解出。求證:有一道題至少有3個(gè)女孩和至少有3個(gè)男孩都解出。3求證:存在無窮多個(gè)正整數(shù)n,使得可將3n個(gè)數(shù)1, 2, 3n排成數(shù)表a1, a2anb1, b2bnc1, c2cn滿足:(1)a1+b1+c1= a2+b2+c2= an+bn+cn=,且為6的倍數(shù)。(2)a1+a2+an= b1+b2+bn= c1+c2+cn=,且為6的倍數(shù)。4給定正整數(shù)n,已知克數(shù)都是正
12、整數(shù)的k塊砝碼和一臺(tái)天平可以稱出質(zhì)量為1,2,n克的所有物品,求k的最小值f(n)。5空間中有1989個(gè)點(diǎn),其中任何3點(diǎn)都不共線,把它們分成點(diǎn)數(shù)各不相同的30組,在任何3個(gè)不同的組中各取一點(diǎn)為頂點(diǎn)作三角形。試問:為使這種三角形的總數(shù)最大,各組的點(diǎn)數(shù)應(yīng)分別為多少?6在平面給定點(diǎn)A0和n個(gè)向量a1,a2,an,且使a1+a2+an =0。這組向量的每一個(gè)排列都定義一個(gè)點(diǎn)集:A1,A2,An=A0,使得求證:存在一個(gè)排列,使由它定義的所有點(diǎn)A1,A2,An-1都在以A0為角頂?shù)哪硞€(gè)600角的內(nèi)部和邊上。7設(shè)m, n, kN,有4個(gè)酒杯,容量分別為m,n,k和m+n+k升,允許進(jìn)行如下操作:將一個(gè)杯中的酒倒入另一杯中或者將另一杯倒?jié)M為止。開始時(shí),大杯中裝滿酒而另3個(gè)杯子卻空著,問:為使對(duì)任何SN,S<m+n+k,都可經(jīng)過若干次操作,使得某個(gè)杯子中恰有S升酒的關(guān)于m,n,k的充分必要條件是什么?8設(shè)有30個(gè)人坐在一張圓桌的周圍,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版全新水電工程承包合同權(quán)利與義務(wù)
- 2025年度體育用品代工生產(chǎn)合同模板(專業(yè)運(yùn)動(dòng)系列)4篇
- 2025年度特色農(nóng)家樂經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同范本4篇
- 2024綠色能源項(xiàng)目開發(fā)與合作合同
- 2024租賃合同租金計(jì)算方式
- 2024運(yùn)輸及代收款合同
- 鋼質(zhì)機(jī)動(dòng)貨船修造行業(yè)深度研究報(bào)告
- 2025年度個(gè)人知識(shí)產(chǎn)權(quán)質(zhì)押反擔(dān)保合同模板4篇
- 2025年個(gè)人網(wǎng)絡(luò)安全技術(shù)入股合作協(xié)議4篇
- 2025年云南基投資源開發(fā)有限公司招聘筆試參考題庫(kù)含答案解析
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- DB33T 2570-2023 營(yíng)商環(huán)境無感監(jiān)測(cè)規(guī)范 指標(biāo)體系
- 上海市2024年中考英語(yǔ)試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報(bào)
- 垃圾車駕駛員聘用合同
- 2025年道路運(yùn)輸企業(yè)客運(yùn)駕駛員安全教育培訓(xùn)計(jì)劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機(jī)床維護(hù)保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國(guó)家安全員資格考試題庫(kù)加解析答案
評(píng)論
0/150
提交評(píng)論