集合與函數的概念_第1頁
集合與函數的概念_第2頁
集合與函數的概念_第3頁
集合與函數的概念_第4頁
集合與函數的概念_第5頁
已閱讀5頁,還剩66頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學11集合 第一章第一章 集合與函數概念集合與函數概念人教A版數學11.1集合的含義與表示 第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學1我們在初中接觸過“正數的集合”、“負數的集合”等,集合的含義又是什么呢?解不等式2x13得x2,所有大于2的實數集在一起稱為這個不等式的解集平面幾何中,圓是到定點的距離等于定長的點的集合自然數的集合0,1,2,3,高一(5)班全體同學組成一個集合請想一想,集合這個概念應該怎樣描述?第一章第一

2、章 集合與函數概念集合與函數概念人教A版數學一般地,我們把所研究的對象如點、自然數、高一(5)班的同學統(tǒng)稱為 ,把一些 組成的總體叫做,通常用表示2元素與集合的關系用符號表示3集合中元素的性質(或稱三要素):元素元素集合大寫拉丁字母A、B、C,、確定性、互異性、無序性第一章第一章 集合與函數概念集合與函數概念人教A版數學(1)給定的集合中的元素必須是確定的“我國的小河流”能不能組成一個集合,你能用集合的知識解釋嗎?答案:“我國的小河流”不能組成一個集合因為集合中的元素必須是確定的,而在我國的河流中到底多大才算小河流并無具體的標準第一章第一章 集合與函數概念集合與函數概念人教A版數學(2)集合中

3、的元素必須是互不相同的,由1,1,1,3組成的集合為;若aa2,1則a .(3)若構成兩集合的元素是一樣的,則稱兩集合 ,若集合1,2與集合a,1相等,則a .4常見的數集符號:自然數集: ;正整數集: ;整數集: ;有理數集: ;實數集: .5把集合中的元素一一列舉出來并用 括起來表示集合的方法叫做,如大于1且小于10的偶數構成的集合可表示為1,1,3相等2NNZQR花括號“ ”列舉法0,2,4,6,80第一章第一章 集合與函數概念集合與函數概念人教A版數學用列舉法表示下列集合:(1)方程(x21)(x22x8)0的解集為(2)方程|x1|3的解集為(3)絕對值小于3的整數的集合為1,1,4

4、,22,42,1,0,1,2第一章第一章 集合與函數概念集合與函數概念人教A版數學6用集合所含元素的表示集合的方法,稱作描述法具體方法是:在花括號內先寫上表示這個集合元素的,再畫一條豎線,在這條豎線后面寫出這個集合中元素所具有的 它的一般形式是xA|p(x)或x|p(x)“ ”為代表元素,“ ”為元素x必須具有的共同特征,當且僅當“x”適合條件“p(x)”時,x才是該集合中的元素,此法具有抽象概括、普遍性的特點,當元素個數較多時,一般選用此法共同特征一般符號及取值(或變化)范圍共同特征xp(x)第一章第一章 集合與函數概念集合與函數概念人教A版數學1試用描述法表示下列集合:(1)方程x23x2

5、0的解集為(2)不等式3x20的解集為(3)大于1小于5的整數組成的集合為2用列舉法表示下列集合:(1)6的正約數組成的集合_(2)不等式2x15的自然數解組成的集合_(3)古代我國的四大發(fā)明組成的集合_(4)Ax|00 xZ|1x5第一章第一章 集合與函數概念集合與函數概念人教A版數學解析(1)6的正約數為1,2,3,6,故所求集合為1,2,3,6(2)不等式2x15變形為x3,因此它的自然數解為0,1,2,故所求集合為0,1,2(3)古代我國的四大發(fā)明為:指南針,造紙,火藥,印刷術,形成集合為指南針,造紙,火藥,印刷術(4)A1,2,3,4,5(5)B2,3第一章第一章 集合與函數概念集合

6、與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學本節(jié)重點:集合的概念,集合中元素的三個特性及集合的表示方法本節(jié)難點:集合中元素的性質的理解第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學正確理解概念,準確使用符號,熟練進行集合不同表示方法的轉換是學好本節(jié)的關鍵1要辯證理解集合和元素這兩個概念:(1)符號和 是表示元素和集合之間關系的,不能用來表示集合之間的關系元素與集合之間是個體與整體的關系,不存在大小與相等關系(2)集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符合條件第一

7、章第一章 集合與函數概念集合與函數概念人教A版數學2深刻認識集合中元素的四種屬性(1)任意性:集合中的元素可以是任意的對象,無論是數、式、點、線、人,還是其它的某種事或物,只要它們具有某種共同屬性,集中在一起就能組成一個集合,我們把集合的這一性質稱為元素的任意性;在中學,我們主要研究對象是一系列的數的集合或點的集合(2)確定性:判斷一些對象是否可以組成一個集合,主要方法是,在觀察任意一個對象時,應該可以確定這一對象要么屬于這一集合,要么它不屬于這一集合第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學(3)無序性:在表示一個集合時,我們

8、只需將某些指定的對象集在一起,雖然習慣上會將元素按一定順序來寫出,但卻不強調它們的順序,當兩個集合中的元素相同,即便放置順序完全不同時,它們也表示同一集合例如:a,b和b,a表示同一個集合(4)互異性:對于任意一個集合而言,在這一集合中的元素都是互不相同的個體如:給出集合1,a2,我們根據集合中元素的互異性,就已經得到了關于這個集合的幾點信息,即這一集合中有兩個不同的元素,其中的一個是實數1,而另一個一定不是1,所以a1,且a1.第一章第一章 集合與函數概念集合與函數概念人教A版數學3正確理解列舉法(1)元素間用分隔號“,”隔開;(2)元素不重復;(3)對于含較多元素的集合,如果構成該集合的元

9、素有明顯規(guī)律,可用列舉法,但是必須把元素間的規(guī)律顯示清楚后才能用省略號4合理選用集合的表示方法列舉法與描述法各有優(yōu)點,列舉法可以看清集合的元素,描述法可以看清集合元素的特征,一般含有較多或無數多個元素時不宜采用列舉法,因為不能將集合中的元素一一列舉出來,而沒有列舉出來的元素往往難以確定第一章第一章 集合與函數概念集合與函數概念人教A版數學5要正確理解描述法用描述法表示集合時注意:(1)弄清元素所具有的形式(即代表元素是什么),是數、還是有序實數對(點)等(2)元素具有怎樣的屬性?用描述法表示集合時,若需要多層次描述屬性時,可選用聯結詞“且”與“或”等聯結;若描述部分出現元素記號以外的字母時,要

10、對新字母說明其含義或指出其取值范圍第一章第一章 集合與函數概念集合與函數概念人教A版數學6特別注意以下幾種集合,這是我們研究集合時的主要研究對象(1)一般數集(2)特殊數集:如方程的解集;不等式的解集等(3)平面點集(4)圖形集7集合語言集合語言是現代數學的基本語言,也就是用集合的有關概念和符號來敘述問題的語言包括文字語言、符號語言、圖形語言要熟練地將集合的三種語言進行相互轉化第一章第一章 集合與函數概念集合與函數概念人教A版數學8解集合問題的關鍵解決集合問題的關鍵是弄清集合由哪些元素所構成如何弄清呢?關鍵在于把抽象問題具體化、形象化也就是把用描述法表示的集合用列舉法來表示,或用圖示法來表示抽

11、象的集合,或用圖形來表示集合例如,在判斷集合Ax|x4k1,kZ與集合By|y2n1,nZ是否為同一集合時,若從代表元素入手來分析它們之間的關系,則比較抽象,而用列舉法來表示兩個集合,則它們之間的關系就一目了然即A,1,1,3,5,而B,1,1,3,5A與B是同一集合第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學例1下列各組對象:接近于0的數的全體;比較小的正整數全體;平面上到點O的距離等于1的點的全體;正三角形的全體; 的近似值的全體其中能構成集合的組數是()A2組B3組C4組 D5組第一章第一章 集合與函數概念集合與函數概念人教

12、A版數學分析集合中的元素必須是確定的解析“接近于0的數”、“比較小的正整數”標準不明確,即元素不確定,所以、構不成集合同樣,“ 的近似值”沒有給出取近似值的標準(如“四舍五入法”、“收尾法”、“去尾法”等)和位數,因此很難判定一個數,比如1.5,是不是它的近似值,所以也不是一個集合、能構成集合選A.第一章第一章 集合與函數概念集合與函數概念人教A版數學下列各條件中,能夠成為集合的是()A與 非常接近的正數B世界著名的科學家C所有的等腰三角形D全班成績好的同學答案C解析對于選項A、B、D沒有明確的標準來衡量,故選C.第一章第一章 集合與函數概念集合與函數概念人教A版數學分析本題重在考查元素的互異

13、性,需要結合實數的性質去思考,尤其是要準確認識根式的意義第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學若x1,3,x3,則有()Ax0或x1Bx1或x3Cx0或x1或x3Dx0或x3答案C解析x1,3,x3x1或3或x3當xx3時x0,1,由于x31,3,x1,故x0,1,3,故選C.第一章第一章 集合與函數概念集合與函數概念人教A版數學例3若集合1,|x|與x,x2相等,求實數x的值解析1,|x|與x,x2兩集合相等,兩集合含有相同的元素即x,x2一定含有1這個元素由于x20,x1.第一章第一章 集合與函數概念集合與函數概念人教A

14、版數學例4將下列集合改為用符號語言描述:(1)非負奇數集(2)能被3整除的整數的集合(3)第一象限和第三象限內的點的集合(4)一次函數y2x1與二次函數yx2的圖象交點的集合分析從集合中元素(數或點)所滿足的條件、具有的屬性入手,聯想有關的數學表達形式第一章第一章 集合與函數概念集合與函數概念人教A版數學解析(1)x|x2k1,kN*;(2)n|n3k,kZ;(3)(x,y)|xy0;點評要重視同一數學對象的不同形態(tài)語言的表達方法及互譯練習(如,普通語言符號語言),這對今后學習大有裨益.第一章第一章 集合與函數概念集合與函數概念人教A版數學例5用適當的方法表示下列集合:(1)24的正約數組成的

15、集合;(2)大于3小于10的整數組成的集合;(3)方程x2axb0的解集;(4)平面直角坐標系中第二象限的點集;分析首先搞清楚集合的元素是什么,然后選用適當的方法表示集合第一章第一章 集合與函數概念集合與函數概念人教A版數學解析(1)1,2,3,4,6,8,12,24;(2)大于3小于10的整數xZ|3x104,5,6,7,8,9;(3)x|x2axb0;(4)(x,y)|x3且x2n,nZ;(3)P|P在平面內且PAPB第一章第一章 集合與函數概念集合與函數概念人教A版數學例6下面三個集合:x|yx21;y|yx21;(x,y)|yx21(1)它們是不是相同的集合?(2)它們各自的含義是什么

16、?分析對于用描述法給出的集合,首先要清楚集合中的代表元素是什么,元素滿足什么條件第一章第一章 集合與函數概念集合與函數概念人教A版數學解析(1)由于三個集合的代表元素代表的對象互不相同它們是互不相同的集合(2)集合x|yx21的代表元素是x,當xR時,yx21有意義x|yx21R;集合y|yx21的代表元素是y,滿足條件yx21的y的取值范圍是y1,y|yx21y|y1第一章第一章 集合與函數概念集合與函數概念人教A版數學集合(x,y)|yx21的代表元素是(x,y),可以認為是滿足yx21的數對(x,y)的集合;也可以認為是坐標平面內的點(x,y)構成的集合,且這些點的坐標滿足yx21,(x

17、,y)|yx21P|P是拋物線yx21上的點第一章第一章 集合與函數概念集合與函數概念人教A版數學總結評述:用描述法表示的集合,認識它一要看集合的代表元素是什么,它反映了集合元素的形式;二要看元素滿足什么條件對符號語言所表達含義的理解在數學中要求是很高的,希望同學們能逐步提高對符號語言的認識.第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函

18、數概念人教A版數學總結評述:用列舉法表示集合,就是要根據集合的一般特性(確定性、互異性、無序性)和集合本身的特征,把集合中的元素不重復、不遺漏、不計順序地一一表示出來第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學例8已知集合A是由方程ax22x10(aR)的實數解作為元素構成的集合(1)1是A中的一個元素,求集合A中的其它元素;(2)若A中有且僅有一個元素,求a的值組成的集合B;(3)若A中至多有一個元素,試求a的取值范圍第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學若a

19、0,則當且僅當方程的判別式44a0,即a1時,方程有兩個相等的實根x1x21,此時集合A中有且僅有一個元素,所求集合B0,1;(3)集合A中至多有一個元素包括兩種情況:A中有且只有一個元素,由(2)知此時a0或a1;A中一個元素也沒有,即A ,此時a0,且44a0,a1;綜合、知所求a的取值范圍是a|a1或a0第一章第一章 集合與函數概念集合與函數概念人教A版數學已知集合AxR|ax2x20,若A中至少有一個元素,則a的取值范圍是_第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學分析題中給出數集A滿足的條件解答此題就從此條件入手逐步推

20、出結論第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學例10集合Ax|x3n1,nZ,Bx|x3n2,nZ,Cx|x6n3,nZ,對任意的aA,bB,是否一定有abC?并證明你的結論錯解由aA,有a3n1(nZ),由bB,有b3n2(nZ),則ab6n3(nZ),故abC第一章第一章 集合與函數概念集合與函數概念人教A版數學辨析集合A是所有被3除余1的整數所組成的集合集合B是所有被3除余2的整數所組成的集合,集合C是所有被6除余3的整數所組成的集合,易知1A,5B,而156 C,則

21、aA,bB,不一定有abC.錯解的根源在于將A,B中的n看成同一個數,即a,b不是任意的,而是互相制約的,從而破壞了a與b的獨立性第一章第一章 集合與函數概念集合與函數概念人教A版數學正解設a3m1(mZ),b3t2(tZ),則ab3(mt)3,當mt是偶數時,設mt2k(kZ),有ab6k3(kZ),則abC;當mt為奇數時,設mt2k1(kZ),有ab6k(kZ),則ab C綜上可知不一定有abC.第一章第一章 集合與函數概念集合與函數概念人教A版數學第一章第一章 集合與函數概念集合與函數概念人教A版數學一、選擇題1給出下面四個關系: R,0.7 Q,00,0N.其中正確的個數是()A1個

22、 B3個C2個 D4個答案B解析0.7為有理數,故0.7 Q不正確第一章第一章 集合與函數概念集合與函數概念人教A版數學2下列集合表示方法正確的是()A方程(x1)(x2)2(x4)0的解集為1,2,2,4B不等式x50的解集為x50C所有奇數構成的集合為xZ|x2k1D所有偶數構成的集合為x|x2k,kZ答案D點評應注意C與D的區(qū)別,C中xZ,并沒要求kZ,故是錯誤的,若改為x|x2k1,kZ則為正確的第一章第一章 集合與函數概念集合與函數概念人教A版數學二、填空題3用符號或 填空:(1)1_1 (2)a_a,b,c(3)3_4,2 (4)0_N*(5)_Q (6) _R(7)若Ax|x2x,則1_A;(8)若Bx|x2x60,則3_B;(9)若CxN|1x10,則8_C;(10)若DxZ|2x3,則1.5_D.第一章第一章 集合與函數概念集合與函數概念人教A版數學答案(1);(2);(3) ;(4) ;(5) ;(6);(7) ;(8) ;(9);(10) .點評如果a是集合A的元素,記作aA,否則記作a A,N*、Q、R分別表示正自然數集、有理數集、實數集第一章第一章 集合與函數概念集合與函數概念人教A版數學4若3a3,2a1,a24,則實數a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論