版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、煙臺大學(xué)土木工程學(xué)院畢業(yè)設(shè)計(jì)(論文)外文翻譯譯文及原文學(xué)生姓名: 院 (系): 專業(yè)班級: 指導(dǎo)教師: 完成日期: 2014 年 月 日 超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)Across-wind loads and effects of super-tall buildings and Structures 作者:GU Ming & QUAN Yong起止頁碼:25312541出版日期(期刊號):August 25, 2011 doi: 10.1007/s11431-011-4543-5出版單位: science china Technological Sciences 外文翻譯譯文:摘要隨
2、著建筑高度的不斷增加,橫向風(fēng)荷載效應(yīng)已經(jīng)成為影響超高層建筑結(jié)構(gòu)設(shè)計(jì)越來越重要的因素。高層建筑結(jié)構(gòu)的橫向風(fēng)荷載效應(yīng)被認(rèn)為由空氣湍流,搖擺以及空氣流體結(jié)構(gòu)相互作用所引起的。這些都是非常復(fù)雜的。盡管30年來,研究人員一直關(guān)注這個問題,但橫向風(fēng)荷載效應(yīng)的數(shù)據(jù)庫以及等效靜力風(fēng)荷載的計(jì)算方法還沒有被開發(fā),大多數(shù)國家在荷載規(guī)范里還沒有相關(guān)的規(guī)定。對超高層建筑結(jié)構(gòu)的橫向風(fēng)荷載效應(yīng)的研究成果主要包括橫向風(fēng)荷載的動力以及動力阻尼的測定,數(shù)據(jù)庫的開發(fā)和等效靜力風(fēng)荷載的理論方法的等等。在本文中,我們首先審查目前國內(nèi)外關(guān)于超高層建筑結(jié)構(gòu)風(fēng)荷載的影響的研究。然后我們在闡述我們的研究成果。最后,我們會列舉我們研究成果在超高
3、層建筑結(jié)構(gòu)中應(yīng)用的的案例。引言隨著科技的發(fā)展,建筑物也越來越長、高、大,越來越對強(qiáng)風(fēng)敏感。因此,風(fēng)工程研究人員面臨著更多新的挑戰(zhàn),甚至一些未知的問題。例如,超高層建筑現(xiàn)在在全世界普遍流行。高度為443米的芝加哥希爾斯塔保持了是世界上最高建筑物26年的記錄,現(xiàn)在還有幾十個超過400米的超高層建筑被建造。828米高的迪拜塔已經(jīng)建造完成。在發(fā)達(dá)國家,甚至有人建議建造數(shù)千米的“空中城市”。隨著高度的增加,輕質(zhì)高強(qiáng)材料的使用,風(fēng)荷載效應(yīng)特別是具有低阻尼的超高層建筑橫向風(fēng)動力響應(yīng)將變得更加顯著。因此,強(qiáng)風(fēng)荷載將成為設(shè)計(jì)安全的超高層建筑結(jié)構(gòu)中的一個重要的控制因素。達(dá)文最初引入隨機(jī)的概念和方法應(yīng)用發(fā)哦順風(fēng)向荷
4、載效應(yīng)的建筑物和其他結(jié)構(gòu)的抗風(fēng)研究。之后,研究人員完善了相關(guān)的理論和方法,并且主要的研究成果已經(jīng)反映在一些國家的結(jié)構(gòu)設(shè)計(jì)荷載規(guī)范里。對現(xiàn)代超高層建筑結(jié)構(gòu),橫風(fēng)向風(fēng)荷載的作用可能已經(jīng)超過順風(fēng)向荷載效用。雖然研究人員已經(jīng)關(guān)注這個方向已經(jīng)30多年了,但能夠被廣泛接受的橫風(fēng)向荷載數(shù)據(jù)庫以及等效靜力荷載的計(jì)算方法還沒有形成。只有少數(shù)國家在他們的荷載規(guī)范里有相關(guān)的內(nèi)容和規(guī)定。因此,研究超高層建筑結(jié)構(gòu)橫風(fēng)向風(fēng)振和等效靜力荷載在超高層建筑設(shè)計(jì)領(lǐng)域內(nèi)具有重要的理論意義和實(shí)用價值。橫風(fēng)向荷載及作用機(jī)制過去的研究主要集中在橫風(fēng)向荷載機(jī)制。郭指出橫風(fēng)向荷載的激發(fā)主要由于被公認(rèn)為空氣動力阻尼的尾流、空氣湍流以及風(fēng)荷載耦
5、合作用。索拉里認(rèn)為橫風(fēng)向荷載主要由于尾流的原因所引起??ɡ锬仿暦Q橫風(fēng)向的效應(yīng)主要是由分離剪切層和尾流波動引起的橫向均勻壓力波動所引起的。目前,高層建筑橫風(fēng)向荷載機(jī)制已被人為是流入湍流激發(fā)、尾流激發(fā)、以及氣動彈性影響。湍流以及尾流激勵一般是外部空氣動力,在本文章中,所涉及的統(tǒng)稱為空氣動力。同時,氣體的彈性效應(yīng)可以被認(rèn)為是氣體動力阻尼。橫風(fēng)向氣體動力不再像順向風(fēng)一樣符合準(zhǔn)穩(wěn)態(tài)假設(shè)。因此,橫向風(fēng)荷載譜不能直接作為一個脈動風(fēng)速譜。對不穩(wěn)定風(fēng)壓力來說,風(fēng)洞試驗(yàn)技術(shù)是目前研究橫向風(fēng)動力的主要技術(shù)。風(fēng)洞試驗(yàn)技術(shù)主要包括氣體彈性模型試驗(yàn)、高頻力平衡試驗(yàn)以及對多點(diǎn)壓力測量的剛性模型實(shí)驗(yàn)技術(shù)。用橫風(fēng)向外部動力,橫
6、風(fēng)向氣動阻尼,橫向風(fēng)響應(yīng)和建筑結(jié)構(gòu)等效靜力風(fēng)荷載的數(shù)據(jù)可以對超高層建筑結(jié)構(gòu)進(jìn)行計(jì)算。橫風(fēng)向氣動力如上所述,橫風(fēng)向氣動力基本上可以通過以下途徑獲得:從氣動彈性模型在一個風(fēng)洞的橫風(fēng)向響應(yīng)確定橫風(fēng)向氣動力;通過剛性模型風(fēng)壓空間一體化獲得橫向風(fēng)動力;使用高頻測力天平技術(shù)測量基底彎矩來獲得廣義的氣動力。從氣動彈性模型的動態(tài)響應(yīng)確定橫風(fēng)向氣動力。這種方法采用的是氣動彈性模型的橫風(fēng)向風(fēng)振響應(yīng),結(jié)合動態(tài)特性的模型識別橫風(fēng)向氣動力。墨爾本對對一系列圓形、方形、六角形、多邊形沿高度分布進(jìn)行氣動彈性模型風(fēng)洞試驗(yàn)。然而進(jìn)一步試驗(yàn)表明您橫風(fēng)向氣動阻力與氣動力混合在一起,使他難以準(zhǔn)確地提取氣動阻尼力。因此,該方法很少使用
7、。風(fēng)壓積分法研究人員建議用風(fēng)壓積分法獲取更準(zhǔn)確的高層建筑橫風(fēng)向氣動力。伊斯蘭等人采用這種方法得到橫風(fēng)向氣動力,陳等人研究了典型建筑結(jié)構(gòu)在不同風(fēng)場條件橫風(fēng)向氣動力。影響橫風(fēng)向氣動力的因素主要有湍流強(qiáng)度、湍流尺度。湍流強(qiáng)度被發(fā)現(xiàn)擴(kuò)大帶氣動力和降低峰值。然而,湍流強(qiáng)度被認(rèn)為對總能量幾乎沒有影響。因此,研究人員在某種程度上已經(jīng)意識到了在風(fēng)力條件定量規(guī)則的變化橫風(fēng)氣動力。梁等人使用這種方法檢查了建筑物上的典型矩形邊界層風(fēng)洞橫風(fēng)向氣動力,從而提出高大的建筑物的經(jīng)驗(yàn)公式和橫風(fēng)向動態(tài)響應(yīng)模型。結(jié)果表明, 橫風(fēng)向湍流對于橫風(fēng)向氣動力的貢獻(xiàn)比那些激勵要小的多?;诖罅康慕Y(jié)果,導(dǎo)出橫風(fēng)向湍流激勵和激發(fā)后的PSD計(jì)算
8、公式。第一廣義的橫風(fēng)向氣動力計(jì)算可以通過在剛性建筑模型整合壓力分布得到,這是該方法一個重要的優(yōu)越性。然而,考慮到在這類方法需要大量的大規(guī)模的結(jié)構(gòu)測壓,同步測量風(fēng)壓是很難實(shí)現(xiàn)的。此外,對于建筑和結(jié)構(gòu)復(fù)雜的配置,準(zhǔn)確的風(fēng)壓分布和空氣動力難以使用這種方法。高頻測力平衡技術(shù)與壓力測量技術(shù)相比,高頻力平衡技術(shù)對于得到總氣動力有其獨(dú)特的優(yōu)勢,檢測和數(shù)據(jù)分析過程都很簡單。因此這項(xiàng)技術(shù)通常應(yīng)用于初期設(shè)計(jì)階段的建筑外觀的選擇。目前這項(xiàng)技術(shù)被廣泛應(yīng)用于作用在超高層建筑結(jié)構(gòu)的全風(fēng)荷載以及動力響應(yīng)計(jì)算。高頻力平衡技術(shù)自從1970年已經(jīng)逐漸發(fā)展起來。賽馬可等人是第一批把此技術(shù)應(yīng)用到模型測量的人。他們最初提出平衡模型系統(tǒng)
9、應(yīng)有一個比風(fēng)力頻率更高的固有頻率。由常和達(dá)文發(fā)展的平衡技術(shù)標(biāo)志著平衡設(shè)備的成熟。卡里姆進(jìn)行了一項(xiàng)實(shí)驗(yàn)研究。對于在城市和郊區(qū)具有不同截面形式的高層建筑的橫風(fēng)向氣動力研究表明對于建筑物風(fēng)的不確定以及結(jié)構(gòu)參數(shù)對橫風(fēng)向空氣動力的設(shè)計(jì)有很小的影響并且順風(fēng)向和橫風(fēng)向氣動力或扭矩之間的聯(lián)系時微不足道的。但橫風(fēng)向動力和扭矩之間的聯(lián)系是非常密切的。這個結(jié)論對于三維方向精確的風(fēng)荷載模型是很重要的。特別是石和全等人做了一系列關(guān)于矩形建筑的邊率,建筑物橫截面形狀,建筑的面率的效應(yīng)以及用五元平衡的高層建筑橫風(fēng)向動力設(shè)計(jì)的風(fēng)域條件。事實(shí)上,基于大量的風(fēng)隧道檢測結(jié)果典型高層建筑橫風(fēng)向氣動力系數(shù)的公式已經(jīng)被我們建立了。橫風(fēng)向
10、氣動阻尼1978年卡里姆對基于氣動彈性模型技術(shù)和風(fēng)壓積分法的高層建筑橫風(fēng)向動力響應(yīng)做了一次調(diào)查研究。他指出由在一定范圍內(nèi)風(fēng)壓力測試獲得的橫風(fēng)向氣動力計(jì)算而得到的橫風(fēng)向風(fēng)振響應(yīng)總是比那些相同建筑模型的氣動彈性模型要小。這個重要的研究成果使得研究人員認(rèn)識到橫風(fēng)向氣動負(fù)阻尼的存在。后來,研究人員對這個問題進(jìn)行了大量的研究并且找到了有效的方案來確定氣動阻尼。第一種方法是通過比較基于來自剛性模型試驗(yàn)和氣動彈性模型試驗(yàn)的氣動力所得到的到哪個臺響應(yīng)。第二種方法是從由氣動彈性模型或強(qiáng)迫振動模型所得到的總氣動力中分離出氣動阻力。第三種方法是從氣動彈性模型分離氣動阻尼的的識別方法。此外,研究人員意識到風(fēng)因素的影響
11、規(guī)律。這些因素包括結(jié)構(gòu)形狀、結(jié)構(gòu)動力參數(shù)、風(fēng)條件等等。卡里姆等人是第一批提出通過比較來確定氣動阻尼的方法。陳等人采用這種技術(shù)來研究橫風(fēng)向效應(yīng)和高層建筑結(jié)構(gòu)的動態(tài)阻尼并提出了一個氣動阻尼公式。史迪克最初制造了一批測定總氣動力、氣動阻尼力與氣動力的強(qiáng)迫振動測量設(shè)備。他測量高層建筑模型基底彎矩是通過一個專門的設(shè)計(jì)裝置產(chǎn)生振動所產(chǎn)生的有關(guān)的氣動力從總氣動力脫離進(jìn)而分解為氣動應(yīng)力和氣動阻尼力獲得氣動阻尼??虏噲D對諧波振動建筑模型測量風(fēng)壓獲得總氣動力。然后用類似史迪克的方法計(jì)算空氣阻尼。這種方法的優(yōu)點(diǎn)是真實(shí)的建筑特性并非必須被考慮到。這種方法更方便更實(shí)用,特別是在推廣實(shí)驗(yàn)結(jié)果。這種方法的的主要缺點(diǎn)是它需
12、要復(fù)雜的設(shè)備,尤其是直到現(xiàn)在多元耦合裝置是不可用的。確定氣動阻尼的隨機(jī)振動響應(yīng)的氣動彈性模型課采用適當(dāng)?shù)南到y(tǒng)識別技術(shù),其中包括頻域法,時域的方法以及時域頻域的方法。在這些方法中隨機(jī)減量法、時域方法被廣泛采用以確定高層建筑的氣動阻尼。杰瑞介紹隨機(jī)減量法來識別結(jié)構(gòu)阻尼。馬克采用隨機(jī)減量法確定高層建筑順橫風(fēng)向氣動阻尼。他們分析了影響建筑長寬比、邊比、氣動阻尼、結(jié)構(gòu)阻尼。田村等人用隨機(jī)減量技術(shù)確定超高層建筑氣動阻尼。全等人通過實(shí)驗(yàn)確定在不同的風(fēng)領(lǐng)域具有不同結(jié)構(gòu)中阻尼方形截面的橫風(fēng)向氣動阻尼,并得出了一個經(jīng)驗(yàn)公式。這些研究成果已通過相關(guān)的中國規(guī)范。秦和谷是第一個引入隨機(jī)空間識別方法于氣動參數(shù)的確認(rèn)的研究
13、人員。這些氣動參數(shù)包括大跨度橋梁氣動剛度和阻尼。于隨機(jī)變量法相比,隨機(jī)空間識別方法具有更多的優(yōu)點(diǎn)。它能克服隨機(jī)變量法的弱噪音抵抗力和需要大量實(shí)驗(yàn)數(shù)據(jù)的缺點(diǎn)。秦采用這種方法來確定高層建筑的氣動阻尼。規(guī)范的實(shí)用性如上所說,雖然研究者一直關(guān)注高層建筑風(fēng)荷載超過30年了,但被廣泛接受的橫風(fēng)向風(fēng)荷載數(shù)據(jù)庫和計(jì)算方法,等效靜力風(fēng)荷載尚未開發(fā)。此外,只有少數(shù)國家采用相關(guān)的規(guī)定和代碼。于其他國家相比,日本建筑協(xié)會提供了計(jì)算高層建筑結(jié)構(gòu)橫風(fēng)向荷載的最好方法。然而公式的橫風(fēng)向代碼知適用于高層建筑高寬比小于六,這似乎很難滿足實(shí)際需要。而且此方法在這種方法里氣動阻尼沒有被考慮。在目前的中國建筑結(jié)構(gòu)荷載規(guī)范只提供了一個
14、簡單的方法來計(jì)算渦激共振的高聳結(jié)構(gòu),而一般不適用于高層建筑結(jié)構(gòu)抗風(fēng)設(shè)計(jì)。在題為“高層建筑鋼結(jié)構(gòu)設(shè)計(jì)詳細(xì)說明”里,我們的研究成果已經(jīng)通過??偨Y(jié)隨著建筑高度不斷增加,橫風(fēng)向荷載效應(yīng)已經(jīng)成為超高層建筑結(jié)構(gòu)設(shè)計(jì)的重要因素。目前,對超高層建筑結(jié)構(gòu)橫風(fēng)向荷載的研究主要包括橫風(fēng)向風(fēng)荷載的機(jī)制,橫風(fēng)向氣動力、氣動阻尼和在規(guī)范中的應(yīng)用。因此我們的一些研究成果主要有典型建筑結(jié)構(gòu)的橫風(fēng)向力,氣動阻尼以及在中國規(guī)范的應(yīng)用。最后介紹了典型的案例,在這個案例中建造更高層建筑的趨勢預(yù)示著風(fēng)工程研究人員將面臨著更多更新的挑戰(zhàn),甚至到現(xiàn)在他們都沒有意識到的問題。因此需要更多地努力去解決工程設(shè)計(jì)問題,同時進(jìn)一步發(fā)展風(fēng)工程。英文原
15、文:Across-wind loads and effects of super-tall buildings and StructuresAbstractAcross-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height. Across-wind loads and effects of tall buildings and structure
16、s are believed to be excited by inflow turbulence, wake, and inflow-structure interaction, which are very complicated. Although researchers have been focusing on the problem for over 30 years, the database of across-wind loads and effects and the computation methods of equivalent static wind loads h
17、ave not yet been developed, most countries having no related rules in the load codes. Research results on the across-wind effects of tall buildings and structures mainly involve the determination of across-wind aerodynamic forces and across-wind aerodynamic damping, development of their databases, t
18、heoretical methods of equivalent static wind loads, and so on. In this paper we first review the current research on across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then we present the results of our study. Finally, we illustrate a case study in which ou
19、r research results are applied to a typical super-tall structure. Introduction With the development of science and technology, structures are becoming larger, longer, taller, and more sensitive to strong wind. Thus, wind engineering researchers are facing with more new challenges, even problems they
20、 are currently unaware of. For example, the construction of super tall buildings is now prevalent around the world. The Chicago Sears Tower with a height of 443 m has kept the record of the worlds tallest building for 26 years now. Dozens of super-tall buildings with heights of over 400 m are set to
21、 be constructed. Burj Dubai Tower with a height of 828 m has just been completed. In developed countries, there are even proposals to build “cities in the air” with thousands of meters of magnitude. With the increase in height and use of light and high-strength materials, wind-induced dynamic respon
22、ses, especially across-wind dynamic responses of super-tall buildings and structures with low damping, will become more notable. Hence, strong wind load will become an important control factor in designing safe super-tall buildings and structures. Davenport initially introduced stochastic concepts a
23、nd methods into wind-resistant study on along-wind loads and effects of buildings and other structures. Afterward, researchers developed related theories and methods, and the main research results have already been reflected in the load codes of some countries for the design of buildings and structu
24、res. For modern super-tall buildings and structures, across- wind loads and effects may surpass along-wind ones. Although researchers have been focusing on the complex problem for over 30 years now, the widely accepted data-base of across-wind loads and computation methods of equivalent static wind
25、loads have not been formed yet. Only a few countries have accordingly adopted the related con-tents and provisions in their codes. Therefore, studying across-wind vibration and the equivalent static wind loads of super-tall buildings and structures is of great theoretical significance and practical
26、value in the field of structural design of super-tall buildings and structures. The current paper thus reviews the research situation of across-wind loads and effects of super-tall buildings and structures both at home and abroad. Then, the research results given by us are presented. Finally, a case
27、 study of across-wind loads and effects of a typical super-tall structure is illustrated. Mechanism of across-wind loads and effects Previous researches focused mainly on the mechanism of across-wind load. Kwok pointed out that across-wind excitation comes from wake, inflow turbulence, and wind-stru
28、cture interaction effect, which could be recognized as aerodynamic damping. Solari attributed the across-wind load to across-wind turbulence and wake excitations, considering wake as the main excitation. Islam et al. and Kareem claimed that across-wind responses are induced by lateral uniform pressu
29、re fluctuation due to separation shear layer and wake fluctuation. Currently, the mechanism of across-wind load on tall buildings and structures has been recognized as inflow turbulence excitation, wake excitation, and aero elastic effect. Inflow turbulence and wake excitation are essentially the ex
30、ternal aerodynamic force, which is collectively referred to in the present paper as aerodynamic force. Meanwhile, aero elastic effect can be treated as aerodynamic damping. Across-wind aero-dynamic force no longer conforms to quasi-steady assumption as the along-wind one; thus, the across-wind force
31、 spectra cannot be directly expressed as a function of inflow fluctuating wind velocity spectra. Wind tunnel test technique for unsteady wind pressures or forces is presently a main tool for studying across-wind aerodynamic forces. The wind tunnel experiment technique mainly involves the aero-elasti
32、c building model experiment technique, high frequency force balance technique, and rigid model experiment technique for multi-point pressure measurement. Using data of across-wind external aerodynamic force and across-wind aerodynamic damping, across-wind responses and the equivalent static wind loa
33、d of buildings and structures can be computed for the structural design of super-tall buildings and structures. Across-wind aerodynamic force As stated above, the across-wind aerodynamic force can be obtained basically through the following channels: identifying across-wind aerodynamic force from ac
34、ross-wind responses of an aero elastic building model in a wind tunnel; obtaining across-wind aerodynamic force through spatial integration of wind pressure on rigid models; obtaining generalized aerodynamic force directly from measuring base bending moment using high frequency force balance techniq
35、ue. Identification of across-wind aerodynamic force from dynamic responses of aero elastic building model. This method employs across-wind dynamic responses of the aero elastic building model, combining the dynamic characteristics of the model to identify across-wind aerodynamic force. Melbourne and
36、 Cheung performed aero elastic model wind tunnel tests on a series of circular, square, hexagon, polygon with eight angles, square with reentrant angles and fillets, and tall or cylindrical structures with sections contracting along height. However, further studies showed that across-wind aerodynami
37、c damping force and aerodynamic force mixed together make it difficult to extract aerodynamic damping force accurately. As such, the method has been seldom used. Wind pressure integration method. Researchers have recommended wind pressure integration to obtain more accurately the across-wind aerodyn
38、amic forces on tall buildings. Islam et al . adopted this method to obtain across-wind aerodynamic forces on tall buildings and structures. Cheng et al. experimentally studied across-wind aerodynamic forces of typical buildings under different wind field conditions and derived empirical formulas for
39、 the power spectrum density of the across-wind aerodynamic force reflecting the effects of turbulent intensity and turbulent scale. Turbulent intensity was found to widen the bandwidth of PSD of the across-wind aerodynamic force and reduce the peak value. However, turbulent intensity was determined
40、to have almost no effects on total energy. Thus, researchers have recognized the quantitative rules of variation of across-wind aerodynamic force with wind condition to some extent. Liang et al. examined across-wind aerodynamic forces on typical rectangular buildings in a boundary layer wind tunnel
41、using this method, thus proposing empirical formulas for PSD of across-wind aerodynamic forces of tall rectangular buildings and an analytical model for across-wind dynamic responses. Ye and Zhang decomposed across-wind turbulence excitation and vortex shedding excitation in across-wind aerodynamic
42、forces on typical super-tall buildings. The results showed that the across-wind turbulence contributed much less to across-wind aerodynamic force than the wake excitation. Based on a large number of results, we derived PSD formulas for the across-wind turbulence excitation and the wake excitation, a
43、nd further derived a new formula for the across-wind aerodynamic force. The first- and higher-mode generalized across-wind aerodynamic forces can be calculated through the integration of pressure distribution on rigid building models, which is an important advantage of this method. However, given th
44、e need for a large number of pressure taps for very large-scale structures in this kind of method, synchronous pressure measurements are difficult to make. Moreover, for buildings and structures with complex configurations, accurate wind pressure distribution and aerodynamic force are difficult to o
45、btain using this kind of method. High frequency force balance technique. Compared with the pressure measuring technique, high frequency force balance technique has its unique advantage for obtaining total aerodynamic forces. The test and data analysis procedures are both very simple; hence, this tec
46、hnique is commonly used for selection studies on architectural appearance in the initial design stage of super-tall buildings and structures. Currently, this technique is widely used for total wind loads acting on super-tall buildings and structures, and for dynamic response computation as well. The
47、 high frequency force balance technique has been gradually developed since the 1970s. Cermak et al. were the first to use this technique for building model measurement. They initially pointed out that the balance-model system should have a higher inherent frequency than the concerned frequency of wi
48、nd forces. The five-component balance developed by Tschanz and Davenport marked the maturity of balance facility. Kareem conducted an experimental study on across-wind aerodynamic forces on tall buildings with various section shapes in urban and suburban wind co research showed that for the building
49、s with , uncertainties of wind and structural parameters have small effects on PSD of the across-wind aerodynamic force, and the correlation between the along-wind aerodynamic force and the across-wind aerodynamic force or the torsion moment is negligible, but there is a strong correlation between t
50、he across-wind aerodynamic force and the torsion moment. This conclusion is important for the development of three-dimensional refined wind load model. Particularly, Gu and Quan and Quan et al. made detailed studies on the effects of the side ratio of a rectangular building, cross-section shape of a
51、 building, aspect ratio of a building, and wind field condition on the PSD of the across-wind aerodynamic force of tall buildings using a five-component balance. In fact, based on a large number of wind tunnel test results, formulas for across-wind aerodynamic force coefficients of the typically tal
52、l buildings have been derived by us and other researchers, some of which are listed in Table 1. In addition, in Table 1, the formula derived by Gu and Quan has already been adopted in related design codes in China. Across-wind aerodynamic damping In 1978, Kareem performed an investigation on across-
53、wind dynamic responses of tall buildings based on both of the aero elastic model technique and the wind pressure integration method. He found out that the across-wind dynamic responses calculated with the across-wind aerodynamic forces obtained from the wind pressure tests at a certain test wind vel
54、ocity range were always smaller than those of the aero elastic model of the same building model. This important result made researchers realize the existence of across-wind negative aerodynamic damping.Subsequently, researchers carried out numerous studies on the problem and developed effective meth
55、ods for identifying aerodynamic damping. The first kind of method obtains aerodynamic damping by comparing the dynamic responses computed based on the aerodynamic forces from rigid building model tests and those from aero elastic model tests. The second one separates aerodynamic damping force from t
56、he total aerodynamic force measured from aero elastic building models or forced vibration building models. The third kind employs identification methods for extracting aerodynamic damping from random responses of aero elastic models. Moreover, researchers realized the effect law of factors, includin
57、g structural shape, structural dynamic parameters, wind conditions, and so on, on aerodynamic damping, Isyumov et al. were the first researchers to propose a method for aerodynamic damping through comparing responses from a rigid building model test using HFFB technique with those of an aero elastic
58、 model of the same building. Cheng et al. adopted the method to study across-wind responses and aerodynamic damping of tall square buildings and proposed an aerodynamic damping formula.Steckley initially developed a set of forced vibration devices for measuring total aerodynamic forces, including aerodynamic damping force and aerodynamic force. He measured the base bending moment of a tall building model, which was vibrated by a specially designed device. The aerodynamic force related to structure motion was separated from the total ae
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西南林業(yè)大學(xué)《材料科學(xué)與工程基礎(chǔ)》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《西京青曲課堂相聲》2021-2022學(xué)年第一學(xué)期期末試卷
- 職稱申報誠信承諾書(個人)附件4
- 西華師范大學(xué)《篆書技法》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《現(xiàn)代數(shù)學(xué)概論》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024年職業(yè)資格-養(yǎng)老護(hù)理員養(yǎng)老基礎(chǔ)知識模擬考試題庫試卷
- 西華師范大學(xué)《人體解剖生理學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《地理多媒體課件制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 西昌學(xué)院《項(xiàng)目設(shè)計(jì)實(shí)訓(xùn)》2022-2023學(xué)年第一學(xué)期期末試卷
- 電力專項(xiàng)測試題附答案
- 水彩畫步驟與表現(xiàn)技法
- 供應(yīng)商現(xiàn)場審核培訓(xùn)
- 2024年貨季電商消費(fèi)復(fù)盤-Flywheel飛未
- 培訓(xùn)內(nèi)驅(qū)力的課件
- 《髕骨骨折骨折》課件
- 腎內(nèi)科激素的用藥知識-健康科普知識講座課件
- 關(guān)于工商管理社會實(shí)踐報告
- 《智能制造系統(tǒng)》課程標(biāo)準(zhǔn)
- 學(xué)校食堂調(diào)查方案
- 2024年航空職業(yè)技能鑒定考試-無人機(jī)AOPA駕駛證考試(視距內(nèi)駕駛員視距內(nèi)駕駛員)筆試歷年真題薈萃含答案
- 激勵理論-赫茨伯格的“雙因素理論”案例分析課件
評論
0/150
提交評論