




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)點,不共線,則“”是“”( )A充分不必要條件B必要不充分條件C充分必要條件D既不充分又不必要條件2某幾何體的三視圖如圖所示,則此幾何體的體積為( )AB1CD3為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口
2、執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有( )A12種B24種C36種D48種4已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則( )A0B1C673D6745的展開式中的項的系數(shù)為( )A120B80C60D406若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是( )ABCD7雙曲線x26-y23=1的漸近線與圓(x3)2y2r2(r0)相切,則r等于()A3B2C3D68已知函數(shù),則方程的實數(shù)根的個數(shù)是( )ABCD9已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的
3、終邊上,則( )ABCD10已知,則( )ABCD211據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是( )ACPI一籃子商品中所占權(quán)重最大的是居住BCPI一籃子商品中吃穿住所占權(quán)重超過50%C豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%12已知向量,且與的夾角為,則( )AB1C或1D或9二、填空題:本題共4小題,每小題5分,共20分。13
4、已知f(x)為偶函數(shù),當x0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是_.14如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、為頂點的四面體的外接球的體積為_.15已知是第二象限角,且,則_.16已知,且,則的最小值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項和為,求滿足的最小正整數(shù)的值.18(12分)在直角坐標平面中,已知的頂點,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設(shè)
5、過點且不垂直于軸的直線與交于,兩點,點關(guān)于軸的對稱點為,證明:直線過軸上的定點.19(12分)某地為改善旅游環(huán)境進行景點改造如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1(百米),且F恰在B的正對岸(即BFl3)(1)在圖中建立適當?shù)钠矫嬷苯亲鴺讼?,并求棧道AB的方程;(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(EPF)最大?
6、請在(1)的坐標系中,寫出觀測點P的坐標20(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.82821(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽
7、車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計()求的值,并估計該城市駕駛員交通安全意識強的概率;()已知交通安全意識強的樣本中男女比例為4:1,完成22列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關(guān);()在()的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.635
8、7.87910.82822(10分)某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學(xué)期望.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用向量垂直的表示、向量數(shù)量積的
9、運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.2C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積故選.3C【解析】先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,
10、共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.4B【解析】由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題. 其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解5A【解析】化簡得到,再利用二項式定
11、理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.6C【解析】求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題7A【解析】由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y22x,圓心坐標為(3,0)由題意知,圓心到漸近線的距離等于圓的半徑r,
12、即r223-0222+1=3.答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.8D【解析】畫出函數(shù) ,將方程看作交點個數(shù),運用圖象判斷根的個數(shù)【詳解】畫出函數(shù)令有兩解 ,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題9D【解析】由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.10B【解析】結(jié)合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得.故選:B
13、【點睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.11D【解析】A.從第一個圖觀察居住占23%,與其他比較即可. B. CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D. 易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A. CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B. CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分
14、解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D. 豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.12C【解析】由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13y=2x【解析】試題分析:當x0時,-x0時,函數(shù)y=f(x),則當x0時,求函數(shù)的解析式”有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當x0時,
15、函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x)14【解析】將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15【解析】由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系及兩角和的正切
16、公式,相對不難,注意運算的準確性.16【解析】由,先將變形為,運用基本不等式可得最小值,再求的最小值,運用函數(shù)單調(diào)性即可得到所求值.【詳解】解:因為,且,所以 因為,所以 ,當且僅當時,取等號,所以 令,則,令,則,所以函數(shù)在上單調(diào)遞增,所以所以則所求最小值為故答案為: 【點睛】此題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調(diào)性求最值,考查化簡和運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析,(2)最小正整數(shù)的值為35.【解析】(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2
17、),則可求出,令,即可求出 的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,當時,整理可得,是首項為1,公差為1的等差數(shù)列,.(2)由(1)可得,解得,最小正整數(shù)的值為35.【點睛】本題考查了等差中項,考查了等差數(shù)列的定義,考查了 與 的關(guān)系,考查了裂項相消求和.當已知有 與 的遞推關(guān)系時,常代入 進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).18(1)();(2)證明見解析.【解析】(1)設(shè)點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點,表示出直線,取,得,即可證明直線過軸上的定點.【詳
18、解】(1)設(shè),由已知,(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),則,.直線:.令,得.直線過軸上的定點.【點睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點問題,考查學(xué)生的計算能力,屬于中檔題.19(1)見解析,x0,1;(2)P(,)時,視角EPF最大【解析】(1)以A為原點,l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點的坐標可求方程;(2)設(shè)出的坐標,表示出,利用基本不等式求解的最大值,從而可得觀測點P的坐標【詳解】(1)以A為原點,l1為x軸,拋物
19、線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點B得:p1,故方程為,x0,1;(2)設(shè)P(,),t0,作PQl3于Q,記EPQ,F(xiàn)PQ,令,則:,當且僅當即,即,即時取等號;故P(,)時視角EPF最大,答:P(,)時,視角EPF最大【點睛】本題主要考查圓錐曲線的實際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進行求解,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20(1)190(2)見解析 (3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)【解析】(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滄州叉車考試題庫及答案
- 人教版四年級下冊復(fù)式條形統(tǒng)計圖教案配套
- 房屋買賣合同貨幣補償
- 提升前臺文員職業(yè)素養(yǎng)的實踐方案計劃
- 幼兒園教研與家庭教育的有效銜接計劃
- 優(yōu)化資源配置的年度工作計劃思路
- 加強業(yè)務(wù)知識的傳播計劃
- 授權(quán)獨家代理合同
- 電力電子轉(zhuǎn)換器原理與運用練習(xí)題
- 幼兒園學(xué)期規(guī)劃成長的萌芽希望的花蕾計劃
- (2024年)《蛙泳》說課稿
- 內(nèi)鏡中心護士長如何管理
- 教學(xué)方法導(dǎo)論教師培訓(xùn)課件
- TCALC 003-2023 手術(shù)室患者人文關(guān)懷管理規(guī)范
- 網(wǎng)絡(luò)傳播概論(第5版) 課件 第4-6章 網(wǎng)絡(luò)傳播形式之短視頻傳播、網(wǎng)絡(luò)傳播中的群體互動、網(wǎng)絡(luò)傳播與“議程設(shè)置”
- 物業(yè)客戶服務(wù)主要觸點及基本要求
- 老年癡呆的護理課件
- 中藥熱奄包在呼吸系統(tǒng)疾病中的應(yīng)用研究
- 2024年企業(yè)戰(zhàn)略與決策培訓(xùn)資料
- 小學(xué)英語學(xué)科項目化學(xué)習(xí)案例-
- (40)-第四章 網(wǎng)絡(luò)層-知識點9-VPN和NAT計算機網(wǎng)絡(luò)
評論
0/150
提交評論