如何求數(shù)列通項(xiàng)公式導(dǎo)學(xué)學(xué)案_第1頁
如何求數(shù)列通項(xiàng)公式導(dǎo)學(xué)學(xué)案_第2頁
如何求數(shù)列通項(xiàng)公式導(dǎo)學(xué)學(xué)案_第3頁
如何求數(shù)列通項(xiàng)公式導(dǎo)學(xué)學(xué)案_第4頁
如何求數(shù)列通項(xiàng)公式導(dǎo)學(xué)學(xué)案_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第 PAGE 11 頁 共 10 頁如何求數(shù)列通項(xiàng)公式一、累加法(也叫逐差求和法):利用求通項(xiàng)公式的方法稱為累加法。累加法是求型如的遞推數(shù)列通項(xiàng)公式的基本方法(可求前項(xiàng)和).例1 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而利用逐差求和法求得數(shù)列的通項(xiàng)公式。例2 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由得則所以評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,例3 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故因此,則評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而利用逐差求和法求得數(shù)列的通項(xiàng)公式,最后再求數(shù)列的通項(xiàng)公式。二、累乘

2、法(也叫逐商求積法):利用恒等式求通項(xiàng)公式的方法稱為累乘法,累乘法是求型如: 的遞推數(shù)列通項(xiàng)公式的基本方法(數(shù)列可求前項(xiàng)積).例4 已知,求數(shù)列通項(xiàng)公式.【解析】: ,且當(dāng)時(shí),滿足,.反思: 用累乘法求通項(xiàng)公式的關(guān)鍵是將遞推公式變形為.例5 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:因?yàn)椋?,則,故所以數(shù)列的通項(xiàng)公式為評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例6已知數(shù)列滿足,求的通項(xiàng)公式。解:因?yàn)樗杂檬绞降脛t故由,則,又知,則,代入(3)得。所以,的通項(xiàng)公式為評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,從而可得當(dāng)?shù)谋磉_(dá)式,最后再求出數(shù)列的通項(xiàng)公式。三、構(gòu)造新

3、數(shù)列: 將遞推公式(為常數(shù),)通過與原遞推公式恒等變成的方法叫構(gòu)造新數(shù)列.例7 已知數(shù)列中, ,求的通項(xiàng)公式.【解析】:利用,求得,是首項(xiàng)為,公比為2的等比數(shù)列,即,反思:.構(gòu)造新數(shù)列的實(shí)質(zhì)是通過來構(gòu)造一個(gè)我們所熟知的等差或等比數(shù)列.四、公式法:利用熟知的的公式求通項(xiàng)公式的方法稱為公式法,常用的公式有,等差數(shù)列或等比數(shù)列的通項(xiàng)公式。例8 已知無窮數(shù)列的前項(xiàng)和為,并且,求的通項(xiàng)公式?【解析】: , , ,又, .反思:利用相關(guān)數(shù)列與的關(guān)系:,與提設(shè)條件,建立遞推關(guān)系,是本題求解的關(guān)鍵.例9 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,由等差數(shù)列的通

4、項(xiàng)公式,得,所以數(shù)列的通項(xiàng)公式為。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。六 倒數(shù)變換:將遞推數(shù)列,取倒數(shù)變成 的形式的方法叫倒數(shù)變換.例10 已知數(shù)列中, ,求數(shù)列的通項(xiàng)公式.【解析】:將取倒數(shù)得: ,是以為首項(xiàng),公差為2的等差數(shù)列. ,.反思:倒數(shù)變換有兩個(gè)要點(diǎn)需要注意:一是取倒數(shù).二是一定要注意新數(shù)列的首項(xiàng),公差或公比變化了.四、待定系數(shù)法例7 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè)將代入式,得,等式兩邊消去,得,兩邊除以,得代入式得由及式得,則,則數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列,則,故。評(píng)注:本題解題

5、的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。例8 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè)將代入式,得整理得。令,則,代入式得由及式,得,則,故數(shù)列是以為首項(xiàng),以3為公比的等比數(shù)列,因此,則。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求數(shù)列的通項(xiàng)公式。例9 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:設(shè) 將代入式,得,則等式兩邊消去,得,解方程組,則,代入式,得 由及式,得則,故數(shù)列為以為首項(xiàng),以2為公比的等比數(shù)列,因此,則。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)

6、而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。跟蹤訓(xùn)練1.已知,求數(shù)列通項(xiàng)公式.跟蹤訓(xùn)練2.已知數(shù)列滿足,且.則的通項(xiàng)公式是.跟蹤訓(xùn)練3.已知數(shù)列中, ,求數(shù)列的通項(xiàng)公式.跟蹤訓(xùn)練4.已知數(shù)列的前項(xiàng)和,滿足關(guān)系.試證數(shù)列是等比數(shù)列.跟蹤訓(xùn)練5.已知數(shù)列中, ,求數(shù)列的通項(xiàng)公式.跟蹤訓(xùn)練6.設(shè)是正數(shù)組成的數(shù)列,其前項(xiàng)和為,并且對(duì)于所有自然數(shù),與1的等差中項(xiàng)等于與1的等比中項(xiàng),求數(shù)列的通項(xiàng)公式.跟蹤訓(xùn)練1.已知,求數(shù)列通項(xiàng)公式.解:由已知,= .跟蹤訓(xùn)練2.已知數(shù)列滿足,.則的通項(xiàng)公式是.解:時(shí), ,作差得: ,跟蹤訓(xùn)練3.已知數(shù)列中, ,求數(shù)列的通項(xiàng)公式.5. 跟蹤訓(xùn)練4.已知數(shù)列的前項(xiàng)和,滿

7、足關(guān)系.試證數(shù)列是等比數(shù)列.證明:由已知可得:,當(dāng)時(shí),時(shí),滿足上式. 的通項(xiàng)公式,時(shí)為常數(shù),所以為等比數(shù)列.跟蹤訓(xùn)練4.已知數(shù)列中, ,求數(shù)列的通項(xiàng)公式. 6. 跟蹤訓(xùn)練6.設(shè)是正數(shù)組成的數(shù)列,其前項(xiàng)和為,并且對(duì)于所有自然數(shù),與1的等差中項(xiàng)等于與1的等比中項(xiàng),求數(shù)列的通項(xiàng)公式.解:由已知可求,猜測(cè).(用數(shù)學(xué)歸納法證明).,. 五、對(duì)數(shù)變換法例10 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:因?yàn)?,所以。在式兩邊取常用?duì)數(shù)得設(shè) eq oac(,11)將式代入 eq oac(,11)式,得,兩邊消去并整理,得,則,故代入 eq oac(,11)式,得 eq oac(,12)由及 eq oac(,12)式,

8、得,則,所以數(shù)列是以為首項(xiàng),以5為公比的等比數(shù)列,則,因此則。評(píng)注:本題解題的關(guān)鍵是通過對(duì)數(shù)變換把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。六、迭代法例11 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:因?yàn)椋杂?,所以?shù)列的通項(xiàng)公式為。評(píng)注:本題還可綜合利用累乘法和對(duì)數(shù)變換法求數(shù)列的通項(xiàng)公式。即先將等式兩邊取常用對(duì)數(shù)得,即,再由累乘法可推知,從而。二 歸納法:由數(shù)列前幾項(xiàng)用不完全歸納猜測(cè)出數(shù)列的通項(xiàng)公式,再利用數(shù)學(xué)歸納法證明其正確性,這種方法叫歸納法.例二 已知數(shù)列中,求數(shù)列的通項(xiàng)公式.【解析】:,猜測(cè),再用數(shù)學(xué)歸納法證明.(略)反思:用歸納法求遞推數(shù)列,首先要熟悉一般數(shù)列的通項(xiàng)公式,再就是一定要用數(shù)學(xué)歸納法證明其正確性.例12 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由及,得由此可猜測(cè),往下用數(shù)學(xué)歸納法證明這個(gè)結(jié)論。(1)當(dāng)時(shí),所以等式成立。(2)假設(shè)當(dāng)時(shí)等式成立,即,則當(dāng)時(shí),由此可知,當(dāng)時(shí)等式也成立。根據(jù)(1),(2)可知,等式對(duì)任何都成立。評(píng)注:本題解題的關(guān)鍵是通過首項(xiàng)和遞推關(guān)系式先求出數(shù)列的前n項(xiàng),進(jìn)而猜出數(shù)列的通項(xiàng)公式,最后再用數(shù)學(xué)歸納法加以證明。八、換元法例13

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論