版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回2答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
2、要求的。1已知直四棱柱的所有棱長(zhǎng)相等,則直線與平面所成角的正切值等于( )ABCD2已知的面積是, ,則( )A5B或1C5或1D3已知橢圓,直線與直線相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為( )ABCD4從拋物線上一點(diǎn) (點(diǎn)在軸上方)引拋物線準(zhǔn)線的垂線,垂足為,且,設(shè)拋物線的焦點(diǎn)為,則直線的斜率為( )ABCD5若集合,則=( )ABCD6在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),若,則的最小值為( )AB2C3D7已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為( )ABCD8記為等差數(shù)列的前項(xiàng)和.若,則( )A5B3C12D139已
3、知f(x),g(x)都是偶函數(shù),且在0,+)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a0,則( )AF(-a)F(a)且F(1+a)F(1-a)BF(-a)F(a)且F(1+a)F(1-a)CF(-a)F(a)且F(1+a)F(1-a)DF(-a)F(a)且F(1+a)F(1-a)10函數(shù)的部分圖象大致為( )ABCD11已知函數(shù),若函數(shù)的極大值點(diǎn)從小到大依次記為,并記相應(yīng)的極大值為,則的值為( )ABCD12已知銳角滿足則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知集合,則_.14實(shí)數(shù),滿足,如果目標(biāo)函數(shù)的最小值為,則的最小
4、值為_15若函數(shù)滿足:是偶函數(shù);的圖象關(guān)于點(diǎn)對(duì)稱.則同時(shí)滿足的,的一組值可以分別是_.16已知函數(shù)在定義域R上的導(dǎo)函數(shù)為,若函數(shù)沒有零點(diǎn),且,當(dāng)在上與在R上的單調(diào)性相同時(shí),則實(shí)數(shù)k的取值范圍是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)唐詩是中國文學(xué)的瑰寶.為了研究計(jì)算機(jī)上唐詩分類工作中檢索關(guān)鍵字的選取,某研究人員將唐詩分成7大類別,并從全唐詩48900多篇唐詩中隨機(jī)抽取了500篇,統(tǒng)計(jì)了每個(gè)類別及各類別包含“花”、“山”、“簾”字的篇數(shù),得到下表:愛情婚姻詠史懷古邊塞戰(zhàn)爭(zhēng)山水田園交游送別羈旅思鄉(xiāng)其他總計(jì)篇數(shù)100645599917318500含“山”字的篇
5、數(shù)5148216948304271含“簾”字的篇數(shù)2120073538含“花”字的篇數(shù)606141732283160(1)根據(jù)上表判斷,若從全唐詩含“山”字的唐詩中隨機(jī)抽取一篇,則它屬于哪個(gè)類別的可能性最大,屬于哪個(gè)類別的可能性最小,并分別估計(jì)該唐詩屬于這兩個(gè)類別的概率;(2)已知檢索關(guān)鍵字的選取規(guī)則為:若有超過95%的把握判斷“某字”與“某類別”有關(guān)系,則“某字”為“某類別”的關(guān)鍵字;若“某字”被選為“某類別”關(guān)鍵字,則由其對(duì)應(yīng)列聯(lián)表得到的的觀測(cè)值越大,排名就越靠前;設(shè)“山”“簾”“花”和“愛情婚姻”對(duì)應(yīng)的觀測(cè)值分別為,.已知,請(qǐng)完成下面列聯(lián)表,并從上述三個(gè)字中選出“愛情婚姻”類別的關(guān)鍵字并
6、排名.屬于“愛情婚姻”類不屬于“愛情婚姻”類總計(jì)含“花”字的篇數(shù)不含“花”的篇數(shù)總計(jì)附:,其中.0.050.0250.0103.8415.0246.63518(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國,黨和國家為勞動(dòng)者開拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長(zhǎng)光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長(zhǎng)光照時(shí)間的方案,第二組采用
7、降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長(zhǎng)光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn)
8、,認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.19(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓已知曲線上的點(diǎn)M對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)(1)求曲線,的直角坐標(biāo)方程;(2)若點(diǎn)A,B為曲線上的兩個(gè)點(diǎn)且,求的值20(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,求證:常數(shù);(2)設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);當(dāng)?shù)膬?nèi)切圓的面積為
9、時(shí),求直線的方程.21(12分)在中,(1)求的值;(2)點(diǎn)為邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),設(shè),求的取值范圍22(10分)已知直線與橢圓恰有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn). (I)求與的關(guān)系式;(II)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.若當(dāng)時(shí),的面積取到最大值,求橢圓的離心率.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建
10、立空間直角坐標(biāo)系設(shè),則,設(shè)平面的法向量為,則取,得設(shè)直線與平面所成角為,則,直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2B【解析】,,若為鈍角,則,由余弦定理得,解得;若為銳角,則,同理得.故選B.3A【解析】先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線過橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡(jiǎn)后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線過點(diǎn),直線過點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:
11、A【點(diǎn)睛】本小題主要考查直線與直線的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.4A【解析】根據(jù)拋物線的性質(zhì)求出點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),代入斜率公式即可求解.【詳解】設(shè)點(diǎn)的坐標(biāo)為,由題意知,焦點(diǎn),準(zhǔn)線方程,所以,解得,把點(diǎn)代入拋物線方程可得,因?yàn)?,所以,所以點(diǎn)坐標(biāo)為,代入斜率公式可得,.故選:A【點(diǎn)睛】本題考查拋物線的性質(zhì),考查運(yùn)算求解能力;屬于基礎(chǔ)題.5C【解析】求出集合,然后與集合取交集即可【詳解】由題意,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題6B【解析】由,三點(diǎn)共線,可得,轉(zhuǎn)化,利用均值不
12、等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)?,所以因?yàn)?,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7D【解析】設(shè),作為一個(gè)基底,表示向量,然后再用數(shù)量積公式求解.【詳解】設(shè),所以,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8B【解析】由題得,解得,計(jì)算可得.【詳解】,解得,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.9A【解析】試題分析:由題意得,F(xiàn)(x)=
13、2g(1-x),f(x)g(1-x)2f(x),f(x)g(1-x),F(xiàn)(-a)=2g(1+a),f(a)=f(-a)g(1+a)2f(-a),f(a)=f(-a)g(1+a),F(xiàn)(a)=2g(1-a),f(a)g(1-a)2f(a),f(a)0,(a+1)2-(a-1)2=4a0,|1+a|a-1|g(1+a)g(1-a),若f(a)g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),F(xiàn)(-a)F(a),若g(1-a)f(a)g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),F(xiàn)(-a)F(a),若f(a)g(1-a):F(-a)=2f(-a)=2f
14、(a),F(xiàn)(a)=2f(a),F(xiàn)(-a)=F(a),綜上可知F(-a)F(a),同理可知F(1+a)F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.10B【解析】圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況?!驹斀狻浚势婧瘮?shù),四個(gè)圖像均符
15、合。當(dāng)時(shí),排除C、D當(dāng)時(shí),排除A。故選B。【點(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。11C【解析】對(duì)此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時(shí)有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個(gè)單位長(zhǎng)度定義域的值域的2倍,故此得到極大值點(diǎn)的通項(xiàng)公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時(shí),顯然當(dāng)時(shí)有,經(jīng)單調(diào)性分析知為的第一個(gè)極值點(diǎn)又時(shí),均為其極值點(diǎn)函數(shù)不能在端點(diǎn)處取得極值,對(duì)應(yīng)極值,故選:C【點(diǎn)睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對(duì)數(shù)列和函數(shù)的熟悉程度高,為中檔題12C【
16、解析】利用代入計(jì)算即可.【詳解】由已知,因?yàn)殇J角,所以,即.故選:C.【點(diǎn)睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.14【解析】作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時(shí),取得最小值,此時(shí)直線為,作出直線,交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小
17、值,所以直線也過A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為等價(jià)于點(diǎn)與原點(diǎn)連線的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對(duì)應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.15,【解析】根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱,得,即,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.16【解析】由題意可知:為上的單調(diào)函數(shù),則為定值,由指數(shù)函數(shù)的性質(zhì)可知為上的增
18、函數(shù),則在,單調(diào)遞增,求導(dǎo),則恒成立,則,根據(jù)函數(shù)的正弦函數(shù)的性質(zhì)即可求得的取值范圍【詳解】若方程無解,則或恒成立,所以為上的單調(diào)函數(shù),都有,則為定值,設(shè),則,易知為上的增函數(shù),又與的單調(diào)性相同,在上單調(diào)遞增,則當(dāng),恒成立,當(dāng),時(shí),此時(shí),故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,正弦函數(shù)的性質(zhì),輔助角公式,考查計(jì)算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最??;屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為(2)填表見解析;選擇“花”,“簾”作為
19、“愛情婚姻”類別的關(guān)鍵字,且排序?yàn)椤盎ā?,“簾”【解析】?)根據(jù)統(tǒng)計(jì)圖表算出頻率,比較大小即可判斷;(2)根據(jù)統(tǒng)計(jì)圖表完成列聯(lián)表,算出觀測(cè)值,查表判斷.【詳解】(1)由上表可知,該唐詩屬于“山水田園”類別的可能性最大,屬于“其他”類別的可能性最小屬于“山水田園”類別的概率約為;屬于“其他”類別的概率約為;(2)列聯(lián)表如下:屬于“愛情婚姻”類不屬于“愛情婚姻”類共計(jì)含“花”的篇數(shù)60100160不含“花”的篇數(shù)40300340共計(jì)100400500計(jì)算得:;因?yàn)?,所以有超過95%的把握判斷“花”字和“簾”字均與“愛情婚姻”有關(guān)系,故“花”和“簾”是“愛情婚姻”的關(guān)鍵字,而“山”不是;又因?yàn)?,?/p>
20、選擇“花”,“簾”作為“愛情婚姻”類別的關(guān)鍵字,且排序?yàn)椤盎ā保昂煛?【點(diǎn)睛】本題主要考查統(tǒng)計(jì)圖表、頻率與概率的關(guān)系、用樣本估計(jì)總體、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn).考查了學(xué)生對(duì)統(tǒng)計(jì)圖表的識(shí)讀與計(jì)算能力,考查了學(xué)生的數(shù)據(jù)分析、數(shù)學(xué)運(yùn)算等核心素養(yǎng).18(1)見解析;(2)(i)該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤為424千元;(3)分布列見解析,.【解析】(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對(duì)于兩種方法,先計(jì)算出每畝平均產(chǎn)量,再算農(nóng)場(chǎng)一年的利潤.(3)估計(jì)頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,
21、的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長(zhǎng)光照時(shí)間的方法;(2)(i)對(duì)于采用延長(zhǎng)光照時(shí)間的方法:每畝平均產(chǎn)量為千斤.該農(nóng)場(chǎng)一年的利潤為千元.(ii)對(duì)于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,該農(nóng)場(chǎng)一年的利潤為千元.因此,該農(nóng)場(chǎng)若采用延長(zhǎng)光照時(shí)間的方法,預(yù)計(jì)每年的利潤為426千元;若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;.所以的分布列為0123所以.【點(diǎn)睛】本題主要
22、考查樣本估計(jì)總體和離散型隨機(jī)變量的分布列,還考查了數(shù)據(jù)處理和運(yùn)算求解的能力,屬于中檔題.19(1)(2)【解析】(1)先求解a,b,消去參數(shù),即得曲線的直角坐標(biāo)方程;再求解,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線的直角坐標(biāo)方程;(2)由于,可設(shè),代入曲線直角坐標(biāo)方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對(duì)應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標(biāo)方程為設(shè)圓的半徑為R,由題意,圓的極坐標(biāo)方程為(或),將點(diǎn)代入,得,即,所以曲線的極坐標(biāo)方程為,所以曲線的直角坐標(biāo)方程為(2)由于,故可設(shè),代入曲線直角坐標(biāo)方程,可得,所以【點(diǎn)睛】本題考查了極坐標(biāo)和直角坐標(biāo),參數(shù)方程和一般方程的互化以及極坐標(biāo)的幾何意義的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20(1)證明見解析;(2);.【解析】(1)設(shè)過的直線交拋物線于,聯(lián)立,利用直線的斜率公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鍋爐課程設(shè)計(jì)目的
- 項(xiàng)目與施工課程設(shè)計(jì)
- 真空搬運(yùn)機(jī)課程設(shè)計(jì)
- GB/T 18978.171-2024人-系統(tǒng)交互工效學(xué)第171部分:軟件無障礙設(shè)計(jì)指南
- GB/T 45029-2024海洋災(zāi)害預(yù)警報(bào)標(biāo)示符
- 2024論行政合同特權(quán)在公共信息安全保護(hù)中的法律規(guī)制合同3篇
- 2024版沿街商鋪房屋租賃合同
- 2024版農(nóng)產(chǎn)品批發(fā)市場(chǎng)建設(shè)與運(yùn)營合同
- 二零二五年度桉樹種植與林業(yè)病蟲害防治服務(wù)合同6篇
- 2024秘超全的協(xié)議離婚流程指南
- 專題6.8 一次函數(shù)章末測(cè)試卷(拔尖卷)(學(xué)生版)八年級(jí)數(shù)學(xué)上冊(cè)舉一反三系列(蘇科版)
- GB/T 4167-2024砝碼
- 老年人視覺障礙護(hù)理
- 《腦梗塞的健康教育》課件
- 《請(qǐng)柬及邀請(qǐng)函》課件
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語文試題(含答案)
- 《個(gè)體防護(hù)裝備安全管理規(guī)范AQ 6111-2023》知識(shí)培訓(xùn)
- 青海原子城的課程設(shè)計(jì)
- 2023年年北京市各區(qū)初三語文一模分類試題匯編 - 作文
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動(dòng)患者護(hù)理
評(píng)論
0/150
提交評(píng)論