2022年湖北省鄂東南示范高中教改聯(lián)盟高考仿真卷數(shù)學(xué)試題含解析_第1頁
2022年湖北省鄂東南示范高中教改聯(lián)盟高考仿真卷數(shù)學(xué)試題含解析_第2頁
2022年湖北省鄂東南示范高中教改聯(lián)盟高考仿真卷數(shù)學(xué)試題含解析_第3頁
2022年湖北省鄂東南示范高中教改聯(lián)盟高考仿真卷數(shù)學(xué)試題含解析_第4頁
2022年湖北省鄂東南示范高中教改聯(lián)盟高考仿真卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)的圖象如圖所示,則下列說法錯誤的是( )A函數(shù)在上單調(diào)遞減B函數(shù)在上單調(diào)遞增C函數(shù)的對稱中心是D函數(shù)的對稱軸是2已知滿足,則的取值范圍為( )ABCD3水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中 ,則繞AB所在直線旋轉(zhuǎn)一周

2、后形成的幾何體的表面積為( )ABCD4給出下列四個命題:若“且”為假命題,則均為假命題;三角形的內(nèi)角是第一象限角或第二象限角;若命題,則命題,;設(shè)集合,則“”是“”的必要條件;其中正確命題的個數(shù)是( )ABCD5已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,則拋物線方程為( )ABCD6已知,若,則向量在向量方向的投影為( )ABCD7某校為提高新入聘教師的教學(xué)水平,實行“老帶新”的師徒結(jié)對指導(dǎo)形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導(dǎo),現(xiàn)選出3位老教師負責(zé)指導(dǎo)5位新入聘教師,則不同的師徒結(jié)對方式共有( )種.A360B240C150D1208我國

3、古代數(shù)學(xué)巨著九章算術(shù)中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是( )A2B3C4D19給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A12種B18種C24種D64種10已知實數(shù),則的大小關(guān)系是()ABCD11我國古代有著輝煌的數(shù)學(xué)研究成果,其中的周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),

4、有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )ABCD12已知數(shù)列滿足,且,則的值是( )ABC4D二、填空題:本題共4小題,每小題5分,共20分。13已知,的夾角為30,則_.14若函數(shù)恒成立,則實數(shù)的取值范圍是_.15已知曲線,點,在曲線上,且以為直徑的圓的方程是則_16二項式的展開式中項的系數(shù)為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在三棱錐中,是的中點,點在上,平面,

5、平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.18(12分)選修4-5:不等式選講已知函數(shù)()解不等式;()對及,不等式恒成立,求實數(shù)的取值范圍.19(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.20(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實數(shù)的取值范圍.21(12分)在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.

6、22(10分)在平面直角坐標系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點求橢圓的標準方程;若時,求實數(shù);試問的值是否與的大小無關(guān),并證明你的結(jié)論參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱

7、中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.2C【解析】設(shè),則的幾何意義為點到點的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點到點的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關(guān)鍵對于直線斜率要注意斜率不存在的直線是

8、否存在3B【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.4B【解析】利用真假表來判斷,考慮內(nèi)角為,利用特稱命題的否定是全稱命題判斷,利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則中至少有一個是假命題,故錯誤;當內(nèi)角為時,不是象限角,故錯誤;由特稱命題的否定是全稱命題知

9、正確;因為,所以,所以“”是“”的必要條件,故正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.5C【解析】根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.6B【解析】由,再由向量在向量方向的投影為化簡運算即可【詳解】, 向量

10、在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題7C【解析】可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有共有結(jié)對方式6090150種故選:C【點睛】本題考查排列組合的綜合應(yīng)用解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù)本題中有一個平均分組問題計數(shù)時容易出錯兩組中每組中人數(shù)都是2,因此方法數(shù)為8B【解析】將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)?/p>

11、求解等比數(shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,求的值因為,解得,解得故選B【點睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.9C【解析】根據(jù)題意,分2步進行分析:,將4人分成3組,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案【詳解】解:根據(jù)題意,分2步進行分析:,將4人分成3組,有種分法;,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況

12、,則有種不同的安排方法;故選:C【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題10B【解析】根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出【詳解】解:,故選:B【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題11D【解析】利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期記這5部專著分別為,其中產(chǎn)生于漢

13、、魏、晉、南北朝時期從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為故選D【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.

14、12B【解析】 由,可得,所以數(shù)列是公比為的等比數(shù)列, 所以,則, 則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.二、填空題:本題共4小題,每小題5分,共20分。131【解析】由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,的夾角為30,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題

15、.14【解析】若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時的,解關(guān)于的不等式,再取并集,即得。【詳解】由題意得,只要即可,當時,令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時,有最小值,若恒成立,則,解得;當時,恒成立;當時,單調(diào)遞增,,不合題意,舍去.綜上,實數(shù)的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是常考題型。15【解析】設(shè)所在直線方程為設(shè)點坐標分別為,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設(shè)所在直線方程為設(shè)點坐標分別為,都

16、在上,故兩式相減,可得(因為是的中點),即聯(lián)立直線與的方程:又,即,即又因為,則有即.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長公式,考查了學(xué)生的計算能力,綜合性比較強,屬于中檔題.1615【解析】由題得,令,解得,代入可得展開式中含x6項的系數(shù).【詳解】由題得,令,解得,所以二項式的展開式中項的系數(shù)為.故答案為:15【點睛】本題主要考查了二項式定理的應(yīng)用,考查了利用通項公式去求展開式中某項的系數(shù)問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)證明見解析;【解析】(1)推導(dǎo)出,由是的中點,能證明是有中點(2)作于點,推導(dǎo)出平面,從

17、而,由,能證明平面,由此能證明平面平面【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,在中,是的中點,是有中點(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,平面,平面,平面平面【點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題18().().【解析】詳解:()當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.()因為,所以.由題意知對,即,因為,所以,解得.【點睛】 絕對值不等式解法的基本思路是:去掉絕對值號,把它轉(zhuǎn)化為一般的不等式求解

18、,轉(zhuǎn)化的方法一般有:絕對值定義法;平方法;零點區(qū)域法 不等式的恒成立可用分離變量法若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進而求出參數(shù)范圍這種方法本質(zhì)也是求最值一般有: 為參數(shù))恒成立 為參數(shù))恒成立 19t1【解析】把變形為結(jié)合基本不等式進行求解.【詳解】因為即,當且僅當,時,上述等號成立,所以,即,又x,y,z0,所以xyzt1【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20(1);(2)【解析】(1)分類討論去絕對值號,即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時成立,可得的最小值,即可求解.【詳解】(1)當時,不等式可化為,得,無解;當-2x1時,不等式可化為得x0,故01時,不等式可化為,得x2,故1x 2. 綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數(shù)的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.21(1)(2)存在;常數(shù),定值【解析】(1)設(shè)出的坐標,利用以及,求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論