




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認(rèn)真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)的圖像與一條平行于軸的直線有兩個交點,其橫坐標(biāo)分別為,則( )ABCD2下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象( )A向左平移個單位B向右平移個單位C向左平移個單位D向右平移個單位3已知為圓:上任意一點,若線段的垂直平分線交
2、直線于點,則點的軌跡方程為( )ABC()D()4若復(fù)數(shù),其中是虛數(shù)單位,則的最大值為( )ABCD5已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是若,則= ( )AB1CD26已知雙曲線C:=1(a0,b0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為( )ABC2D+17陀螺是中國民間最早的娛樂工具,也稱陀羅. 如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為( )ABCD8的展開式
3、中的系數(shù)為( )A30B40C40D509已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點,則實數(shù)的取值范圍為( )ABCD10總體由編號為01,02,.,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )A23B21C35D3211若為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限12胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率設(shè)胡夫金字塔的高為,假
4、如對胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點),則C的離心率為_.14已知向量,若,則實數(shù)_.15如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為_.16在中,角、所對的邊分別為、,若,則的取值范圍是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其
5、中著名的景點有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五一”勞動節(jié)當(dāng)日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動節(jié)當(dāng)日客流量數(shù)據(jù)分成3個區(qū)間整理得表:勞動節(jié)當(dāng)日客流量頻數(shù)(年)244以這
6、10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當(dāng)日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤3萬元;若某艘型游船勞動節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當(dāng)日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動節(jié)當(dāng)日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其
7、當(dāng)日獲得的總利潤最大?18(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),)以坐標(biāo)原點 為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點,且求直線 的方程19(12分)以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的最大值.20(12分)已知x,y,z均為正數(shù)(1)若xy1,證明:|x+z|y+z|4xyz;(2)若,求2xy2yz2xz的最小值21(
8、12分)已知函數(shù),它的導(dǎo)函數(shù)為(1)當(dāng)時,求的零點;(2)當(dāng)時,證明:22(10分)已知關(guān)于的不等式有解.(1)求實數(shù)的最大值;(2)若,均為正實數(shù),且滿足.證明:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】畫出函數(shù)的圖像,函數(shù)對稱軸方程為,由圖可得與關(guān)于對稱,即得解.【詳解】函數(shù)的圖像如圖,對稱軸方程為,又,由圖可得與關(guān)于對稱,故選:A【點睛】本題考查了正弦型函數(shù)的對稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于中檔題.2D【解析】根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函
9、數(shù)解析式為,根據(jù)圖像:,故,即,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.3B【解析】如圖所示:連接,根據(jù)垂直平分線知,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.4C【解析】由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點為,復(fù)數(shù)對應(yīng)的點為,所以,其中,故選C【點睛】本題主要考查復(fù)數(shù)的幾何意義
10、,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點的距離求值即可,屬于基礎(chǔ)題型.5B【解析】由題意或4,則,故選B6B【解析】以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學(xué)生的計算能力,是中檔題.7C【解析】畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何
11、體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.8C【解析】先寫出的通項公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點睛】本題考查二項展開式中某一項系數(shù)的求解,關(guān)鍵是對通項公式的熟練使用,屬基礎(chǔ)題.9D【解析】將原題等價轉(zhuǎn)化為方程在內(nèi)都有兩個不同的根,先求導(dǎo),可判斷時,是增函數(shù);當(dāng)時,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點,使得在有解,通過導(dǎo)數(shù)可判斷當(dāng)時,在上是增函數(shù);當(dāng)時,在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;
12、【詳解】函數(shù)在內(nèi)都有兩個不同的零點,等價于方程在內(nèi)都有兩個不同的根.,所以當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù).因此.設(shè),若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設(shè)其解為,當(dāng)時,在上是增函數(shù);當(dāng)時,在上是減函數(shù).因為,方程在內(nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設(shè),所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題10B【解析】根據(jù)隨機數(shù)表法的抽樣方法,確定選出來的第5個個體的編號.【詳解
13、】隨機數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個數(shù)字開始,由左向右依次選取兩個數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,其中落在編號01,02,39,40內(nèi)的有:16,26,16,24,23,21,依次不重復(fù)的第5個編號為21.故選:B【點睛】本小題主要考查隨機數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.11D【解析】根據(jù)復(fù)數(shù)的運算,化簡得到,再結(jié)合復(fù)數(shù)的表示,即可求解,得到答案【詳解】由題意,根據(jù)復(fù)數(shù)的運算,可得,所對應(yīng)的點為位于第四象限.故選D.【點睛】本題主要考查了復(fù)數(shù)的運算,以及復(fù)數(shù)的幾何意義,其中解答中熟記復(fù)數(shù)
14、的運算法則,準(zhǔn)確化簡復(fù)數(shù)為代數(shù)形式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題12D【解析】設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D二、填空題:本題共4小題,每小題5分,共20分。132【解析】求出焦點到漸近線的距離就可得到的等式,從而可求得離心率【詳解】由題意,一條漸近線方程為,即, ,由得,故答案為:2.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點到漸近線的距離,從而得出一個關(guān)于的等式14-2【解析】根據(jù)向量坐標(biāo)運算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【詳解】由題意得: ,解得:本題正確結(jié)果:【點睛】本題考查向量的坐標(biāo)
15、運算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.15【解析】由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,解得,所以,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.16【解析】計算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明
16、過程或演算步驟。17(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤最大【解析】(1)首先計算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)當(dāng)投入1艘型游船時,因客流量總大于1,則(萬元).當(dāng)投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).當(dāng)投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如
17、下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.18 (1)見解析(2) 【解析】(1)將消去參數(shù)t可得直線的普通方程,利用x=cos, 可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程(2)利用直線被圓截得的弦長公式計算可得答案【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,即,整理得,所以直線l的方程為:【點睛】本題
18、考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線被圓截得的弦長公式的應(yīng)用,考查分析能力與計算能力,屬于基礎(chǔ)題19(1);(2)10【解析】(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時,取最大值,最大值為10.【點睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運算與求解能力,屬于中檔試題.20(1)證明見解析;(2)最小值為1【解析】(1)利用基本不等式可得 , 再根據(jù)0 xy1時, 即可證明|x+z|y+z|4xyz.(2)由, 得,然后利用基本不等式即可得到xy+yz+xz3,從而求出2xy2yz2xz的最小值.【詳解】(1)證明:x,y,z均
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深海探險起點:船舶租賃合同揭秘
- 飛行員培訓(xùn)合同合作意向范本
- 車險代理合同書樣本
- 企業(yè)員工培訓(xùn)合作協(xié)議合同
- 股權(quán)激勵實施合同協(xié)議
- 施工領(lǐng)域農(nóng)民工勞動合同模板
- 汽車購銷合同其一:條款解析
- 小學(xué)生心理課件
- 無線廣播電視傳輸中的信號傳輸信道分配考核試卷
- 天然氣儲層滲透性改善技術(shù)考核試卷
- 2024年甘肅天水麥積山石窟藝術(shù)研究所招聘工作人員考試真題
- 2025年山東省榮成市屬事業(yè)單位招聘崗位及歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 火星表面材料分析-深度研究
- 《職業(yè)技能等級評價規(guī)范編制指南編制說明》
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》解讀講座
- 畜禽養(yǎng)殖場惡臭污染物排放及其處理技術(shù)研究進(jìn)展
- 超聲內(nèi)鏡引導(dǎo)下穿刺活檢術(shù)的配合及護(hù)理
- 新生兒常見的產(chǎn)傷及護(hù)理
- 代寫回憶錄合同
- 2024年10月自考00149國際貿(mào)易理論與實務(wù)試題及答案
- 天耀中華合唱簡譜大劇院版
評論
0/150
提交評論