山東省德州市陵城2022年高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
山東省德州市陵城2022年高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
山東省德州市陵城2022年高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
山東省德州市陵城2022年高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
山東省德州市陵城2022年高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是( )ABCD2已知水平放置的ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中BOCO1,AO,那么原ABC的面

2、積是()AB2CD3某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD4地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計裝機(jī)容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機(jī)容量就突破了,達(dá)到,中國的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計裝機(jī)容量與中國新增裝機(jī)容量圖. 根據(jù)所給信息,正確的統(tǒng)計結(jié)論是( )A截止到2015年中國累計裝機(jī)容量達(dá)到峰值B10年來全球新增裝機(jī)容量連年攀升C10年來中國新增裝機(jī)容量平均超過D截止到2015年中國累計裝機(jī)容量在

3、全球累計裝機(jī)容量中占比超過5設(shè)命題函數(shù)在上遞增,命題在中,下列為真命題的是( )ABCD6已知某幾何體的三視圖如圖所示,則該幾何體的體積是( )AB64CD327已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為( )ABCD8在中,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、的面積分別為、,記(),則取到最大值時,的值為( )A1B1CD9若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為( )AB2CD110歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計算的幾何方

4、法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù)近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計算精度也迅速增加華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是ABCD11已知雙曲線的左、右焦點分別為,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標(biāo)原點),則雙曲線C的漸近線方程為( )ABCD12已知,若,則向量在向量方向的投影為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某學(xué)校高一、高二、高三年

5、級的學(xué)生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為_人.14在中,點是邊的中點,則_,_.15如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為_.16已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若NRF=60,則|FR|等于_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.()求證

6、:平面平面; ()若,求二面角的余弦值.18(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.19(12分)在中,角、的對邊分別為、,且.(1)若,求的值;(2)若,求的值.20(12分)已知函數(shù),直線是曲線在處的切線 (1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標(biāo); (2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明21(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.22(10分)選修45;不等式選講已知函數(shù)(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,

7、求證:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由題意首先確定導(dǎo)函數(shù)的符號,然后結(jié)合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)在處取得極大值,當(dāng)時,;當(dāng)時,;當(dāng)時,.時,時,當(dāng)或時,;當(dāng)時,.故選:【點睛】根據(jù)函數(shù)取得極大值,判斷導(dǎo)函數(shù)在極值點附近左側(cè)為正,右側(cè)為負(fù),由正負(fù)情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.2A【解析】先根據(jù)已知求出原ABC的高為AO,再求原ABC的面積.【詳解】由題圖可知原ABC的高為AO,SABCBCOA2,故答案為A

8、【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.3A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵4D【解析】先列表分析近10年全球風(fēng)力發(fā)電新增裝機(jī)容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機(jī)容量158.1197.2237.8282.9318.7370.5434.3489.2542

9、.7594.1新增裝機(jī)容量39.140.645.135.851.863.854.953.551.4中國累計裝機(jī)裝機(jī)容量逐年遞增,A錯誤;全球新增裝機(jī)容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機(jī)容量平均每年為,選項C錯誤;截止到2015年中國累計裝機(jī)容量,全球累計裝機(jī)容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.5C【解析】命題:函數(shù)在上單調(diào)遞減,即可判斷出真假命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假【詳解】解:命題:函數(shù),所以,當(dāng)時,即函數(shù)在上單調(diào)遞減,因此是假命題命題:在中,在上單調(diào)遞減,所以,是真命題則下列命題為真命題的

10、是故選:C【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題6A【解析】根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.7C【解析】對此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)

11、極大值,分組求和即得【詳解】當(dāng)時,顯然當(dāng)時有,經(jīng)單調(diào)性分析知為的第一個極值點又時,均為其極值點函數(shù)不能在端點處取得極值,對應(yīng)極值,故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題8D【解析】根據(jù)三角形中位線的性質(zhì),可得到的距離等于的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是的中位線,所以到的距離等于的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時,即為的中點時,等號成立,所以

12、,由平行四邊形法則可得,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.9C【解析】根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,解得,所以焦點坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.10B【解析】初始:,第一次循環(huán):,繼續(xù)循環(huán);第二次循環(huán):,

13、此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B11C【解析】利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),由,與相似,所以,即,又因為,所以,所以,即,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。12B【解析】由,再由向量在向量方向的投影為化簡運算即可【詳解】, 向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)分層抽樣的定義建立

14、比例關(guān)系即可得到結(jié)論.【詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.14 2 【解析】根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數(shù)量積的應(yīng)用,考查計算能力,屬于中檔題.15【解析】由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,解得,所以,由,得,解得.故答案為:【點睛】本

15、題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.162【解析】由題意知:,.由NRF=60,可得為等邊三角形,MFPQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,.M,N分別為PQ,PF的中點,PQ垂直l于點Q,PQ/OR,NRF=60,為等邊三角形,MFPQ,易知四邊形和四邊形都是平行四邊形,F(xiàn)為HR的中點,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()詳見解析;().【解析】()由

16、正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;()取的中點,連接、,以、所在直線分別為、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】()是正方形,平面,平面,、平面,且,平面 ,又平面,平面平面;()取的中點,連接、,是正方形,易知、兩兩垂直,以點為坐標(biāo)原點,以、所在直線分別為、軸建立如圖所示的空間直角坐標(biāo)系,在中,、,設(shè)平面的一個法向量,由,得,令,則,.設(shè)平面的一個法向量,由,得,取,得,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等

17、題.18特征值為1,特征向量為【解析】設(shè)出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設(shè)矩陣M,則AM,所以,解得,所以M,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x0,所以屬于特征值的的一個特征向量為【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關(guān)鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).19(1);(2).【解析】(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳

18、解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計算能力,屬于中等題.20(1)見解析,(2)函數(shù)存在唯一零點.【解析】(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點存在性定理即可求出零點個數(shù).【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點, 即函數(shù)存在唯一零點.【點睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過定點、利用導(dǎo)數(shù)研究函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論