長治市重點2022年高考數(shù)學二模試卷含解析_第1頁
長治市重點2022年高考數(shù)學二模試卷含解析_第2頁
長治市重點2022年高考數(shù)學二模試卷含解析_第3頁
長治市重點2022年高考數(shù)學二模試卷含解析_第4頁
長治市重點2022年高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1己知函數(shù)的圖象與直線恰有四個公共點,其中,則( )AB0C1D2一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小

2、圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則( )ABCD3如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為( )ABCD4函數(shù)在上的圖象大致為( )A B C D 5給出以下四個命題:依次首尾相接的四條線段必共面;過不在同一條直線上的三點,有且只有一個平面;空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;垂直于同一直線的兩條直線必平行.其中正確命題的個數(shù)是( )A0B1C2D36已知實數(shù)、滿足不等式組,則的最大值為()ABCD7某幾何

3、體的三視圖如圖所示,則該幾何體的體積為()ABCD8若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是( )ABCD9已知函數(shù),將函數(shù)的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是( )ABCD10已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的( )條件.A充分不必要B必要不充分C充要D既不充分也不必要11已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是( )ABCD12已知橢圓的焦點分別為,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。

4、13各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_.14已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是_.15展開式中的系數(shù)為_16已知,(,),則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)中,內角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.18(12分)如圖,在四棱錐中,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.19(12分)已知函數(shù) .(1)若在 處導數(shù)相等,證明: ;(2)若對于任意 ,直線 與曲線都有唯一公共點,求實數(shù)的取值范圍.20(12分)已知命題:,;命題:函數(shù)無零點.(

5、1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.21(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由22(10分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】先將函數(shù)解析式化簡為,結合題意可求得切點及其范圍,根據導數(shù)幾何意義,即可求得的值.【詳解】函

6、數(shù)即直線與函數(shù)圖象恰有四個公共點,結合圖象知直線與函數(shù)相切于,因為,故,所以.故選:A.【點睛】本題考查了三角函數(shù)的圖像與性質的綜合應用,由交點及導數(shù)的幾何意義求函數(shù)值,屬于難題.2B【解析】根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.3C【解析】分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標

7、系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.4C【解析】根據函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.5B【解析】用空間四邊形對進行判斷;根據公理2對進行判斷;根據空間角的定義對進行判斷;根據空間直線位置關系對進行判斷.【詳解】中,空間四邊形的四條線段不共面,故錯誤.中,由公理2知道,過不在同一條直線上的三點,有且只

8、有一個平面,故正確.中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故錯誤.中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數(shù)形結合思想,化歸與轉化思想.6A【解析】畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的

9、最大值為,故選A【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題7A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵8C【解析】求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相

10、切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題9A【解析】化簡為,求出它的圖象向左平移個單位長度后的圖象的函數(shù)表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解。【詳解】函數(shù)可化為:,將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質等知識,考查轉化能力,屬于中檔題。10B【解析】根據充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平

11、行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.11D【解析】易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,.故選D【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利

12、用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.12B【解析】根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.14【解析】首先根據的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結合區(qū)間上的值小于0恒成立列不等式組,解不等式組

13、求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問題的求解,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.15【解析】把按照二項式定理展開,可得的展開式中的系數(shù)【詳解】解:,故它的展開式中的系數(shù)為,故答案為:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題16【解析】先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】,則,平方可得故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是

14、求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)【解析】(1)利用正弦定理,轉化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即,又(2)由于為的重心故,解得或舍的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.18 (1)見證明;(2) 【解析】(1) 取的中點,連接,要證平面平面,轉證平面,即證, 即可;(2) 以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,分別求出平面與平面的法

15、向量,代入公式,即可得到結果.【詳解】(1)取的中點,連接,因為均為邊長為的等邊三角形,所以,且因為,所以,所以,又因為,平面,平面,所以平面.又因為平面,所以平面平面.(2)因為,為等邊三角形,所以,又因為,所以,在中,由正弦定理,得:,所以.以為坐標原點,以為軸正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則,即,令,則平面的一個法向量為,依題意,平面的一個法向量所以故二面角的余弦值為.【點睛】空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出

16、方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.19(I)見解析(II)【解析】(1)由題x0,由f(x)在x=x1,x2(x1x2)處導數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,利用導數(shù)性質能證明(2)由得,令,利用反證法可證明證明恒成立由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍.【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,下面先證明恒成立若存在,使得,且當自變量充分大時,所以存在,使得,取,則與至少有兩個交點,矛盾由對任意,只有一個解,得為上的遞增函數(shù),得,

17、令,則,得【點睛】本題考查函數(shù)的單調性,導數(shù)的運算及其應用,同時考查邏輯思維能力和綜合應用能力屬難題20(1) (2)【解析】(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,單調遞增,當, 單調遞減,作出函數(shù)圖象如下所示,觀察可知,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值

18、范圍問題的本質是恒成立問題或有解問題解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍21(1) (1)不存在,理由見解析【解析】(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為(1)當直線的斜率不存在時,不符合題意當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立得,設,則,即設,則,則,即,整理得,此方程無解,故的方程不存在綜上所述,不存在直線使得【點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.22(1),函數(shù)的單調遞增區(qū)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論