![泰勒公式及應用翻譯(原文)_第1頁](http://file4.renrendoc.com/view/e10d57ddfa176eb99ecdcec9798c35fb/e10d57ddfa176eb99ecdcec9798c35fb1.gif)
![泰勒公式及應用翻譯(原文)_第2頁](http://file4.renrendoc.com/view/e10d57ddfa176eb99ecdcec9798c35fb/e10d57ddfa176eb99ecdcec9798c35fb2.gif)
![泰勒公式及應用翻譯(原文)_第3頁](http://file4.renrendoc.com/view/e10d57ddfa176eb99ecdcec9798c35fb/e10d57ddfa176eb99ecdcec9798c35fb3.gif)
![泰勒公式及應用翻譯(原文)_第4頁](http://file4.renrendoc.com/view/e10d57ddfa176eb99ecdcec9798c35fb/e10d57ddfa176eb99ecdcec9798c35fb4.gif)
![泰勒公式及應用翻譯(原文)_第5頁](http://file4.renrendoc.com/view/e10d57ddfa176eb99ecdcec9798c35fb/e10d57ddfa176eb99ecdcec9798c35fb5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、精品文檔精品文檔On Taylor s formula for the resolvent of a complex matrixMatthew X. He a, Paolo E. Riccib,_Article history:Received 25 June 2007Received in revised form 14 March 2008Accepted 25 March 2008Keywords:Powers of a matrixMatrix inv aria ntsResolve ntIntroductionAs a con seque nee of the Hilbert id
2、e ntity in 1, the resolve nt R,(A)= (,;. _A)of a non sin gular square matrix A(上 deno ti ng the ide ntity matrix) is show n to be an an alytic fun ctio n of the parameter - in any doma in D with empty intersection with the spectrum v A of A. Therefore, by using Taylor expansion in a neighborhood of
3、any fixed 0 D , we can find in 1 a representation formula for R.(A) using all powers of R.0(A).In this article, by using some precedi ng results recalled, e.g., i n 2, we write dow n a representation formula using only a finite number of powers of R.0( A). This seems to be natural since only the fir
4、st powers of R.0(A) are linearly independent.The ma in tool in this framework is give n by the multivariable poly no mials Fk,n (v1, v2,.,vr) (n= -1,0,1,;k = 1,2,,m 玄 r ) (see 2-6), depe nding on the invariants (w,v2,.,vr) of R.(A); here m denotes the degree of the minimal polyno mial.Powers of matr
5、ices ad Fk,n functionsWe recall in this sect ion some results on represe ntati on formulas for powers of matrices (see e.g. 2-6 and the references therein). For simplicity we refer to the case whe n the matrix is non derogatory so that m = r.Propositi on 2.1. Let A be a nr r(r 2) complex matrix, and
6、 denote by u1,u2,.,ur the invariants of A, and byrP() =det(; - A) f (1)jujrj .j=0its characteristic polynomial (by convention u - -1); then for the powers of A with nonn egative in tegral exp onents the followi ng represe ntati on formula holds true: An = F1,nl(u1,.,U7)ArJ 卩2心(5山2,Ur)Ar,F(xiàn)gUg, u): (2
7、.1)The functions Fk(u,u)that appear as coefficients in (2.1) are defined by the recurre nee relati onr 1Fk,n(u1,u)汕氐(u1, ,uj -上卩心(6,u(-1) ur Fk,n_c (u,ur)J(k =1,r; n 一 -1)(2.2)and in itial con diti ons:Fr 上 1,h_2 (u1 , ,u7)=Ok,h, (k, 1, ,r).(23)Furthermore, if A is nonsingular (u= 0) , then formula
8、(2.1) still holds for negative values of n, provided that we define the Fk,n function for negative values of n as follows:Fk,n(u1,,u7)=Fr1,2(S,里,丄),(k =1,,r; n -1).ur ur u7Taylor expansion of the resolventWe con sider the resolve nt matrix R.(A) defi ned as follows:R =R.(A)*A).(3.1)Note that sometim
9、es there is a cha nge of sig n in Eq. (3.1), but this of course is not esse ntial.It is well known that the resolve nt is an an alytic (rati on al) function ofin everydomain D of the complex plane excluding the spectrum of A, and furthermore it is vanishing at infinity so the only singular points (p
10、oles) of R. (A) are the eigenvalues of A.In 6 it is proved that the invariants v1,v2/ ,vr of R.(A) are linked with those of A by the equationsi(r jW 仏)=送(-1)(hi ,(l=12 ,r).(3.2)uJ - J JAs a con seque nceof Propositi on 2.1, and Eq. (3.2), the in tegral powers of R. (A)can be represe nted as follows.
11、Theorem 3.1 For every 扎貳:A and n 二 N,Ar _1Rn(A)八J,v()Rk(A),(3.3)k 30where the V|(丸)(|=1,2,,r)are given by Eq.(3.2). Denoting by P(A) the spectral radius of A, for every ,二 such that(A) min(卜|,|! |), the Hilbert iden tity holds true(see 1):R,(A) -R(A)- )R,(A)Rt(A).(3.4)Therefore for every - A , we ha
12、veAdR(A)d (3.5)(3.6)(3.7)(3.8)(3.9)r 4R(A)八h=0- 0 (-1)kF.k =05( 0)k R;(A).(3.10)and in gen eralk=(-1)kkRk1(A),(k =1,2,、a )so, for every -0 D, R. (A) can be expanded in the Taylor seriesoCiR.(A)八(_1)kkR;1(A)(- 0)k,k=0which is absolutely and uniformly convergent in D. Defining0 0v1 二 v, 0), ,vr 二 v( 0
13、),0 0 0F k,n 二 Fk,n(w,vr),where the vl () are defined by Eq. (3.2), we can prove the following theorem.Theorem 3.2 The Taylor expa nsion (3.7) of the resolve nt R. (A) in a neighborhood of any regular point 0 can be written in the formTherefore we can derive as a con seque nee:Corollary 3.1 For ever
14、y 1 A and L=1,2, r the series expansions: 0、(-1)k Fi,k(- o)k(3.11)are conv erge nt.Proof. Recalli ng (3.3), we can write0 0 0Rj 二 Fi,k R;-F2,k R;2 -F r,-. , k N),0 0 0R.(A) = JF1,1 Rf0j - F2,1 Fr,1 ;:(Fr,2 ;: (一,0)2-0 0r 1r 2F1,2R; F2,2R/(-1)k0 0F1,kR; F2,k R:-F r,kTherefore, tak ing in to acco unt
15、the in itial con diti ons (2.3) we can write: 0R,(A)二 M)kFr,k(._kz91 i O0- J V (-1)k Fr,k(一 .0)kILk =0oO0+ Z (1)kF1,k仏尢0)k rR1,2 一so (3.10) holds true. The convergenee of series expansions (3.11) is a trivial con seque nee of the con verge nee of the in itial expa nsion (3.7).4. Concluding remarksIt
16、 is worth noting that the resolve ntR.(A) is a keynote element for representinganalytic functions of a matrixA . In fact,denoting by f(z) a function of thecomplex variable z , analytic in a domain containing the spectrum of A, and denoting by k(k=1,2,s) the distinet eigenvalues of A with multiplicit
17、ies Jk,the Lagra nge-Sylvester formula (see 4) is give n bysf(A)八 -k j=0kwhere k = *(k =12 ,s) is the projector associated with the eigenvalue kand=( kl -A)j,(k =1,2,s; j 71;,% -1).Denoting by k a Jordan curve, the boundary of the domain Dk, separating a fixedk from all other eigenvalues, recalling
18、the Riesz formula, it follows thatWhen kis only known approximately, this projector cannot be derived by using the residue theorem.In this case it is necessary to integrate R.(A) along k (being possibly aGershgori n circle), by using the known represe ntati on of the resolve nt (see 3)1 rJ rR(A)= 環(huán)瓦
19、 正(一1)5憶口Ak,(4.1)P(丸)k=0 - j=0or by substituting R. (A) with its Taylor expansion, and assuming as initial pointany o /.k in side Dk.Which is the best formula depe nds on the releva nt stability and computatio nal cost. From the theoretical point of view,formulas (3.7), (3.10) and (4.1) seem to be e
20、quivale nt from the stability point of view, since all require kno wledge of inv aria nts of the given matrix A. However, in our opinion, in the situation considered, Eq. (3.10) seems to be less expensive with respect to (3.7), since it requires one to approximate r series of eleme ntary fun cti ons
21、 in stead of an infin ite series of matrices.AcknowledgementsWe are grateful to the anonym ous referees for comme nts that led us to improve this paper.ReferencesI. Glazman, Y. Liubitch, Analyse lin aire dans lesespaces de dimension finies: Manuel et probl mes, in: H. Damadian (Ed.), Traduit du russe par, Mir, Moscow, 1972.M. Bruschi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教部編版歷史七年級下冊第10課 《蒙古族的興起與元朝的建立》 聽課評課記錄7
- 北師大版歷史八年級上冊第10課《新文化運動》聽課評課記錄
- 豬場購銷合同(2篇)
- 生產(chǎn)承包合同(2篇)
- 仁愛版八年級地理上冊3.2《土地資源》聽課評課記錄
- 八年級道德與法治下冊第四單元崇尚法治精神第七課尊重自由平等第1框自由平等的真諦聽課評課記錄(新人教版)
- 蘇科版數(shù)學七年級下冊10.2.1《二元一次方程組》聽評課記錄
- 冀教版數(shù)學七年級下冊《多項式乘多項式》聽評課記錄2
- 湘教版數(shù)學七年級上冊2.3《代數(shù)式的值》聽評課記錄
- 五年級數(shù)學下冊聽評課記錄《3.1 分數(shù)乘法(一)(4)》北師大版
- 固體廢棄物檢查記錄
- 工程設計費取費標準
- GB/T 5465.1-2009電氣設備用圖形符號第1部分:概述與分類
- 2023年遼寧鐵道職業(yè)技術學院高職單招(數(shù)學)試題庫含答案解析
- CAPP教學講解課件
- 自然環(huán)境的服務功能課件 高中地理人教版(2019)選擇性必修3
- 小耳畸形課件
- 新人教版初中初三中考數(shù)學總復習課件
- 機械制造有限公司組織架構(gòu)圖模板
- 8.3 摩擦力 同步練習-2021-2022學年人教版物理八年級下冊(Word版含答案)
- 生理學教學大綱
評論
0/150
提交評論