




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1Relationship among variables Functional relationship Statistical relationship(correlation) Y depends on X, but isnt merely determined by X. Example: price and sales daily high temperaturethe demand for air-conditioning RegressionAccording to observed data, establish regression equation and make sta
2、tistical reference (predict) .Chapter 10 (P 227) Correlation and Regression Analysis2What does regression do?Solve the following problems:Determine whether there is statistical relationship among variables, if does, give the regression equation. Forecast the value of another variable (dependent) acc
3、ording to one variable or a group of variables (independent).3Example:X-price,Y-sales for a kind of productWe collect data:1. Scatter plot2. Regression equation(the Least Square Estimation)3. Correlation coefficient (Testing the regression model)4.Forecasting (point and interval forecasting )Simple
4、Linear RegressionX(Yuan)708090100110Y(thousand)11.2511.2811.6511.7012.144Linear Regression ModelVariables consist of a linear function. YXiii01SlopeY-InterceptIndependent (Explanatory) VariableDependent (Response) Variable Random Error5Sample Linear Regression Modelei = random errorYXYbbXeiii01YbbXi
5、i01Sampled Observed Value6Sample Linear Regression ModelThe least squares method provides an estimated regression equation that minimizes the sum of squared deviations between the observed values of the dependent variable yi and the estimated values of the dependent variable . 7Least Squares estimat
6、ione2YXe1e3e4YbbXeiii01YbbXii01OLS Min eeeeeii2112223242Predicted Value8Coefficient & EquationYbXbXYnXYXnXbYbXiiiiiniin011122101Sample regression equationSlope for the estimated regression equationP 238 (10.17)Intercept for the estimated regression equationb9Evaluating the ModelSignificance TestTest
7、 Coefficient of Determination and Standard Deviation of EstimationResidual AnalysisYbbXii0110Measures of Variation in Regression SST = SSR + SSE 1. Total Sum of Squares (SST) P 239 (10.20)Measure the variation between the observed value Yi and the mean Y. 2. Sum of Squares due to Regression (SSR) Va
8、riation caused by the relationship between X and Y. 3. Sum of Squares due to Error (SSE) Variation caused by other factors.11Variation MeasuresYXYXiSST (Yi - Y)2 SSE (Yi -Yi)2 SSR (Yi - Y)2 Yi YbbXii0112Coefficient of Determination 0 r2 1rbYbXYnYYnYiiiininiin201211212Explained variation Total variat
9、ionSSRSSTA measure of the goodness of fit of the estimated regression equation. It can be interpreted as the proportion of the variation in the dependent variable y that is explained by the estimated regression equation.13Correlation CoefficientA numerical measure of linear association between two v
10、ariables that takes values between 1 and +1. Values near +1 indicate a strong positivelinear relationship, values near 1 indicate a strong negative linear relationship, and values near zero indicate lack of a linear relationship.14Coefficients of Determination (r2) and Correlation (r)r2 = 1,r2 = 0,Y
11、Yi = b0 + b1XiXYYi = b0 + b1XiXYYi = b0 + b1XiXYYi = b0 + b1XiXr = +1r = -1r = +0.9r = 015Test of Slope Coefficient for Significance1. Tests a Linear Relationship Between X & Y 2.Hypotheses H0: 1 = 0 (No Linear Relationship) H1: 1 0 (Linear Relationship) 3.Test Statistic16Example Test of Slope Coeff
12、icientH0: 1 = 0H1: 1 0 .05df 5 - 2 = 3Critical value:Statistic: Determine:Conclusion:tbSb1110700019153655.Reject at = 0.05There is evidence of a relationship.t03.1824-3.1824.025RejectReject.02517Multiple Regression ModelThere exists linear relationship among an dependent variable and two or more tha
13、n two independent variables.YXXXiiiPPii01122slope of populationintercept of population Yrandom errorDependent VariableIndependent Variables18Example: New York Times You work in the advertisement department of New York Times(NYT). You will find to what extent do ads size(square inch ) and publishing
14、volume (thousand) influence the response to ads(hundred). You have collected the following data: response size volume112488131357264410619Example (NYT) Computer Output Parameter Estimates Parameter Standard T for H0:Variable DF Estimate Error Param=0 Prob|T|INTERCEP 1 0.0640 0.2599 0.246 0.8214ADSIZ
15、E 1 0.2049 0.0588 3.656 0.0399CIRC 1 0.2805 0.0686 4.089 0.0264 b2b0bPb120Interpretation of Coefficients 1.Slope (b1)If the publishing volume remains unchanged,when ads sizeincreases one square inch, the response is expected to increase 0.2049 hundred times. 2.Slope (b2)If ads size remains unchanged
16、, when publishing volume increases one thousand, the response is expected to in- crease 0.2805 hundred times. 21Evaluating the Model1.How does the model describe the relationship among variables? 2.Closeness of Best Fit3.Assumptions met4.Significance of estimates5.Correlation among variables6.Outlie
17、rs (unusual observations)22Testing Overall SignificanceTest whether there is linear relationship between Y and all the independent variables. 2.Use F statistic.Hypothesis H0: 1 = 2 = . = P = 0 There is no linear relationship between Y and independent variables. H1: At least there is a coefficient isnt equal to 0. At least there is an independent variable influences Y23Testing Overall Significance Computer OutputAnalysis of Variance Sum of Mean Source DF Squares Square F Value ProbFModel 2 9.2497 4.6249 55.440 0.0043Error 3 0.2503 0.0834C Total 5 9.5000Pn - P -1n -
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于孩子撫養(yǎng)權(quán)的離婚合同書
- 貨物采購(gòu)合同補(bǔ)充協(xié)議
- 設(shè)備銷售與購(gòu)買合同范文
- 車險(xiǎn)綜合保險(xiǎn)合同示例
- 服務(wù)合同預(yù)付款借款范本
- 歌手簽約演出服務(wù)合同
- 服裝采購(gòu)代理合同
- 大型建筑機(jī)械租賃合同樣本范本
- 城鄉(xiāng)結(jié)合部三方共建項(xiàng)目合同
- 商鋪?zhàn)赓U合同規(guī)范樣本
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)附答案
- 《高鐵乘務(wù)安全管理與應(yīng)急處置(第3版)》全套教學(xué)課件
- 歷年湖北省公務(wù)員筆試真題2024
- 學(xué)校食品安全長(zhǎng)效管理制度
- 2.2 說話要算數(shù) 第二課時(shí) 課件2024-2025學(xué)年四年級(jí)下冊(cè)道德與法治 統(tǒng)編版
- 滋補(bǔ)品項(xiàng)目效益評(píng)估報(bào)告
- 提綱作文(解析版)- 2025年天津高考英語熱點(diǎn)題型專項(xiàng)復(fù)習(xí)
- 2025年南京機(jī)電職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年(2016-2024)頻考點(diǎn)試題含答案解析
- 2025年春新人教版歷史七年級(jí)下冊(cè)全冊(cè)課件
- 2025年浙江臺(tái)州機(jī)場(chǎng)管理有限公司招聘筆試參考題庫(kù)含答案解析
- 《工程勘察設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)》(2002年修訂本)
評(píng)論
0/150
提交評(píng)論