下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、小波域圖像復(fù)原 彭思龍 中科院自動(dòng)化所 國(guó)家專用集成電路設(shè)計(jì)工程技術(shù)研究中心Image Restoration Image Restoration References:H.C. Andrews and B.R. Hunt , Digital Image Restoration , Englewood Cliffs, NJ:Prentice-Hall, 1977鄒謀炎 , 反卷積和信號(hào)復(fù)原, 國(guó)防工業(yè)出版社, 2001.3Mark R. Banham and A.K. Katsaggelos, Digital Image Restoration, IEEE Trans. Image Proc.
2、 , March 1997 R.L.Lagendijk,J.Biemond. Iterative identification and restoration of images. Kluwer Academic Publishers,1991P.Mller, B.Vidakovic. Bayesian inference in wavelet-based models. 1999 Springer-Verlag New York, IncImage RestorationDegradation modelIll-posed problemRegularizationBayes framewo
3、rk for image restorationImage Restoration MethodsFrequency domain methods Spatial domain methodsWavelet domain methodsImage RestorationDegradation modelDegradation model (Continous form)h+f (u,v)g (u, v) (u, v): Point Spread Function, PSF or Blur Function : Pointwise nonlinear operation: Additive no
4、ise: True image: Observed image Linear vs. Non-linearMany types of degradation can be approximated by linear, space invariant processesNon-linear and space variant models are more accurateDifficult to solveUnsolvable Image RestorationDegradation modelHere, We only consider the linear, space invarian
5、t PSF ! Image RestorationDegradation modelDegradation model (Discrete form)Size:f : N1N2h : M1M2g : (N1M1-1)(N2+M2-1)Image RestorationDegradation modelMatrix-Vector representation of image restoration problem: Stack f, g, row-by-row or column-by-column to form vector representations of these 2-D var
6、iables theoretic analysis more easily Degradation model (Discrete form)Size:f : N1N21H : (N1M1-1)(N2+M2-1)N1N2 g : (N1M1-1)(N2+M2-1)1H is a block toeplitz matrixImage RestorationDegradation modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsFrequency do
7、main methods Spatial domain methodsWavelet domain methodsImage Restoration Ill-posed ProblemInverse filtering solutionH is ill-conditioned which makes image restoration problem an ill-posed problemSolution is not stable: not continuely depend on the observed data gRestoration Problem: g, h and stati
8、stical properties of noise are Known, the task is to estimate the true image f Another perspective Least square solutionImage Restoration Ill-posed ProblemSingular Value position of H :U is MM orthornormal matrixV is NN orthornormal matrixAnother perspective Least square solution (Cont.)Image Restor
9、ation Ill-posed ProblemBy simple computation:It can be seen that if H have small singular values , then a small change in g or H will cause large change in the solution. Noise-free Sinusoidal noise Noise-freeExact H Exact H not exact HImage Restoration Ill-posed Problem Examples:Image RestorationDeg
10、radation modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsWavelet domain methodsImage RestorationRegularization Generally speaking, any regularization method tries to analyze a related well-posed problem whose solution approximates the original ill-po
11、sed problem. The well-posedness is achieved by implementing one or more of the following basic ideas:restriction of the data; change of the solution space and/or topologies; modification of the operator itself; the concept of regularization operators; andwell-posed stochastic extensions of ill-posed
12、 problems. For g = Hf + h, the regularization method constructs the solution asu(f, g) describes how the real image data is related to the degraded data. In other words, this term models the characteristic of the imaging system. bv(f) is the regularization term with the regularization operator v ope
13、rating on the original image f, and the regularization parameter b used to tune up the weight of the regularization term. By adding the regularization term, the original ill-posed problem turns into a well-posed one, that is, the insertion of the regularization operator puts some constraints on what
14、 f might be, which makes the solution more stable.Image RestorationRegularization Solution FormulationImage RestorationRegularization A case studyConsider By SVD position of H,we get The introduction of reduced the affection of small singular values of H on the solution. Image RestorationDegradation
15、 modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsWavelet domain methods MAP (maximize a-posteriori probability)Formulate solution from statistical point of view: MAP approach tries to find an estimate of image f that maximizes the a-posteriori probab
16、ility p(f|g) asAccording to Bayes rule, P(f) is the a-priori probability of the unknown image f. We call it the prior modelP(g) is the probability of g which is a constant when g is givenp(g|f) is the conditional probability density function (pdf) of g. We call it the sensor model, which is a descri
17、ption of the noisy or stochastic processes that relate the original unknown image f to the measured image g.Image RestorationBayes Framework MAP - DerivationBayes interpretation of regularization theory Noise termPrior termImage RestorationBayes Framework Noise TermAssume Gaussian noise of zero mean
18、, the standard deviation is MAP Derivation(Cont.)Image RestorationBayes Framework Prior TermThe prior knowledge of the original image refers to the a-priori belief that the state of a pixel is entirely determined by the states of its neighboring pixels. Specifically, it is expected that pixels close
19、 to each other tend to have the same or similar brightness values.A Markov Random Field (MRF) is a probabilistic process in which all interaction is local. It is an appropriate model to represent the local property in the image. However, MRF is difficult to estimate. There is an equivalence between
20、Gibbs distribution and MRF.Gibbs distribution allows the modeling of local structure through energies which describes the interactions of pixels within each clique of the neighborhood. MAP Derivation(Cont.)Image RestorationBayes FrameworkImage RestorationWavelet domain methodsWavelet domain represen
21、tation of image restoration problemImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999) position Strategy Image RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Prior Model: GGD: is a scale parameter
22、 similar to the standard deviation of a gaussian densityImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)The cost functionalImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Taking the gradie
23、nt of the cost function we getA fixed point iteration to solve for f*We can solve this equation with conjugate gradient algorithm Image RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Practical implementation of the algorithmProblem: The size of is t
24、oo large to be implemented on nowadays computer, and cannot be approximated by circulate matrix !Solution: Transform the iteration problem back to spatial domainNow : the problem can be solved by convolution, wavelet position and reconstruction only. We need not generate the large scale matrix reall
25、y!Image RestorationWavelet domain methodsComparisionImage RestorationWavelet domain methodsOther wavelet domain methodsWavelet-based Regularized Deconvolution, WaRD Wavelet-Vaguelette position Multiscale kalman filtering Multiscale maximum entropy deconvolutionWavelet domain gaussian scale mixtureHi
26、dden Markov Tree Model based restorationLocal gaussian model based restoratoinWavelet domain EM algorithmImage RestorationWavelet domain methodsFurther reading (1):M.R. Banham and A.K. Katsaggelos, Spatially-Adaptive Wavelet-Based Multiscale Image Restoration , IEEE Trans. Image Proc. Vol. 5 , April
27、 1996 , 619634Matthew S. Crouse, Robert D. Nowak and Richard G. Baraniuk, Wavelet-Based Statistical Signal Processing Using Hidden Markov Models, IEEE Trans. Signal Proc. Vol. 46 , April 1998 , 886902J. Portilla and E.P. Simoncelli,Image restoration using Gaussian scale mixtures in the wavelet domain, Proc. 10th IEEE Intl Conf on Image Processing, Barcelona, Spain. Sep 2003J. Portilla, V. Strela, M. Wainwright and E.P. Simoncelli, Image denoising using scale mixtures o
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)甲苯二異氰酸酯行業(yè)產(chǎn)能預(yù)測(cè)及投資可行性研究報(bào)告版
- 2024-2030年中國(guó)牙科激光治療儀行業(yè)技術(shù)創(chuàng)新模式分析及發(fā)展策略研究報(bào)告
- 2024-2030年中國(guó)煤膠油項(xiàng)目可行性研究報(bào)告
- 2024-2030年中國(guó)煤制丙烯行業(yè)發(fā)展可行性及投資規(guī)劃分析報(bào)告版
- 2024-2030年中國(guó)熱計(jì)量改造行業(yè)運(yùn)營(yíng)模式及未來(lái)發(fā)展策略分析報(bào)告
- 2024年機(jī)器視覺產(chǎn)業(yè)項(xiàng)目申請(qǐng)報(bào)告模板
- 2024-2030年中國(guó)汽車維修行業(yè)經(jīng)營(yíng)模式及發(fā)展規(guī)劃分析報(bào)告版
- 2024-2030年中國(guó)汽車改裝行業(yè)發(fā)展創(chuàng)新模式及投資戰(zhàn)略研究報(bào)告
- 2024年天然氣液化模塊項(xiàng)目提案報(bào)告范稿
- 兒童安全教育規(guī)章制度
- 少兒趣味編程Scratch綜合實(shí)戰(zhàn)《小車巡線》教學(xué)設(shè)計(jì)
- 第4課《公民的基本權(quán)利和義務(wù)》(課件)-部編版道德與法治六年級(jí)上冊(cè)
- 糖尿病患者體重管理專家共識(shí)(2024年版)解讀
- 中國(guó)融通集團(tuán)招聘筆試題庫(kù)2024
- ICU譫妄患者的護(hù)理
- 村醫(yī)衛(wèi)生室考勤管理制度
- 2024新版英語(yǔ)英語(yǔ)3500個(gè)單詞分類大全
- 2024至2030年中國(guó)軟件和信息技術(shù)服務(wù)產(chǎn)業(yè)全景調(diào)查及投資咨詢報(bào)告
- 住宅小區(qū)物業(yè)快遞柜合作合同2024年
- 1《百合花》第一課公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)統(tǒng)編版高中語(yǔ)文必修上冊(cè)
- 新課標(biāo)下的語(yǔ)文教學(xué):五上《中國(guó)民間故事》表現(xiàn)性任務(wù)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論