2021-2022學(xué)年寧夏中衛(wèi)市海原縣高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年寧夏中衛(wèi)市海原縣高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年寧夏中衛(wèi)市海原縣高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年寧夏中衛(wèi)市海原縣高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年寧夏中衛(wèi)市海原縣高三第二次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為( )

2、A3BC4D2如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是( )A該年第一季度GDP增速由高到低排位第3的是山東省B與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D去年同期浙江省的GDP總量超過了4500億元3水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中 ,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為( )ABCD4設(shè)是虛數(shù)單位,若復(fù)數(shù),則( )ABCD5設(shè)集合,若集合中有且僅有2個元素,則實數(shù)的取值范圍為ABCD6若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是( )A36 cm3

3、B48 cm3C60 cm3D72 cm37設(shè)是虛數(shù)單位,復(fù)數(shù)()ABCD8已知向量,若,則與夾角的余弦值為( )ABCD9著名的斐波那契數(shù)列:1,1,2,3,5,8,滿足,若,則( )A2020B4038C4039D404010如圖,在ABC中,點M是邊BC的中點,將ABM沿著AM翻折成ABM,且點B不在平面AMC內(nèi),點P是線段BC上一點.若二面角P-AM-B與二面角P-AM-C的平面角相等,則直線AP經(jīng)過ABCA重心B垂心C內(nèi)心D外心11已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為( )A2kB4kC4D212向量,且,則( )ABCD二、填空題:本題共4小題

4、,每小題5分,共20分。13已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_.14已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是_.15設(shè)、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為_.16已知,滿足,則的展開式中的系數(shù)為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在中,內(nèi)角,所對的邊分別是,()求的值;()求的值18(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.19(12分)

5、已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證: 20(12分)網(wǎng)絡(luò)看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機(jī)器故障進(jìn)行查找詢問、診斷治療、檢查修復(fù)的一種新興的看病方式.因此,實地看病與網(wǎng)絡(luò)看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機(jī)構(gòu)調(diào)研了患者對網(wǎng)絡(luò)看病,實地看病的滿意程度,在每種看病方式的患者中各隨機(jī)抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡(luò)看病,實地看病兩種方式進(jìn)行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡(luò)看病、實地看病那種方式的滿意度更高?

6、并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡(luò)看病實地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為患者看病滿意度與看病方式有關(guān)?(3)從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821(12分)如圖所示,在三棱錐中,點為中點(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值22(10分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)

7、直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標(biāo).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.2D【解析】根據(jù)折線圖、柱形圖的性質(zhì),對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年

8、第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學(xué)生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.3B【解析】根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.4A【解析】結(jié)合復(fù)數(shù)的除

9、法運算和模長公式求解即可【詳解】復(fù)數(shù),則,故選:A.【點睛】本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題5B【解析】由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.6B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.7D【解析】利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案【詳解】由題意,復(fù)數(shù),故選D【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答

10、中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題8B【解析】直接利用向量的坐標(biāo)運算得到向量的坐標(biāo),利用求得參數(shù)m,再用計算即可.【詳解】依題意, 而, 即, 解得, 則.故選:B.【點睛】本題考查向量的坐標(biāo)運算、向量數(shù)量積的應(yīng)用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.9D【解析】計算,代入等式,根據(jù)化簡得到答案.【詳解】,故,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.10A【解析】根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SPBM【詳解】二面角P-AM-B與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-ABM

11、=VP-ACM,即故BP=CP,故P為CB中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學(xué)生的計算能力和空間想象能力.11D【解析】分析可得,再去絕對值化簡成標(biāo)準(zhǔn)形式,進(jìn)而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當(dāng)時,等式不是雙曲線的方程;當(dāng)時,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎(chǔ)題.12D【解析】根據(jù)向量平行的坐標(biāo)運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知

12、可得,結(jié)合雙曲線的定義可知,結(jié)合 ,從而可求出離心率.【詳解】解:,,又,則.,即解得,即.故答案為: .【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計算量.14【解析】根據(jù)雙曲線方程,設(shè)及,將代入雙曲線方程并化簡可得,由題意的最小值為,結(jié)合平面向量數(shù)量積的坐標(biāo)運算化簡,即可求得的值,進(jìn)而求得離心率即可.【詳解】設(shè)點,則,即,當(dāng)時,等號成立,.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應(yīng)用,由平面向量數(shù)量積的最值求離心率,屬于中檔題.15【解析】根據(jù)球的表面積求得球的半徑,設(shè)球心到四棱錐底面的

13、距離為,求得四棱錐的表達(dá)式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設(shè)球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當(dāng)且僅當(dāng)時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關(guān)計算,考查球的內(nèi)接四棱錐體積的最值的求法,屬于中檔題.161【解析】根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結(jié)合組合的知識求得系數(shù)【詳解】由題意,的展開式中的系數(shù)為故答案為:1【點睛】本題考查二項式定理,掌握二項式定理的應(yīng)用是解題關(guān)鍵三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()()【解析】()根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;

14、()結(jié)合二倍角公式及和差公式,即可求得本題答案.【詳解】()因為,由正弦定理可得,又,所以,所以根據(jù)余弦定理得,解得,;()因為,所以,則【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎(chǔ)題.18(1)見解析(2)【解析】(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進(jìn)而證得結(jié)論.(2) 過作交于,由為的中點,結(jié)合已知有平面.則,可求得.建立坐標(biāo)系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面.中,為的中點,.又、平面,平面.平面,平面平面.(2)解:過作交

15、于,如圖為的中點,.又平面,平面.,.所以,又、兩兩互相垂直,以、為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系.,設(shè)平面的法向量,則,即.令,則,.平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.19(1);(2)見解析.【解析】(1)將問題轉(zhuǎn)化為對任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可得函數(shù)的單調(diào)區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,則,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減;有最大值,.(2)證明:由(1)知

16、,當(dāng)時,即,令,則,令,則,在上是增函數(shù),又,當(dāng)時,;當(dāng)時,在上是減函數(shù),在上是增函數(shù),即,【點睛】本題考查了利用導(dǎo)數(shù)解決恒成立問題,考查了利用導(dǎo)數(shù)證明不等式,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.20(1)實地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨立性檢驗得有的把握認(rèn)為患者看病滿意度與看病方式有關(guān);(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡(luò)看病中,有的患者滿意度評分低于80分;

17、在實地看病中,有的患者評分高于80分,因此患者對實地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡(luò)看病滿意度評分的中位數(shù)為73分,實地看病評分的中位數(shù)為87分,因此患者對實地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分平均分低于80分;實地看病的滿意度的評分平均分高于80分,因此患者對實地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡(luò)看病的滿意度評分在莖6上的最多,關(guān)于莖7大致呈對稱分布;實地看病的評分分布在莖8,上的最多,關(guān)于莖8大致呈對稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認(rèn)為實地看病評分比網(wǎng)絡(luò)看病打分更高,因此實地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一

18、一種或其他合理理由均可得分.(2)參加網(wǎng)絡(luò)看病滿意度調(diào)查的15名患者中共有5名對網(wǎng)絡(luò)看病滿意,10名對網(wǎng)絡(luò)看病不滿意;參加實地看病滿意度調(diào)查的15名患者中共有10名對實地看病滿意,5名對實地看病不滿意.故完成列聯(lián)表如下:滿意不滿意總計網(wǎng)絡(luò)看病51015實地看病10515總計151530于是,所以有的把握認(rèn)為患者看病滿意度與看病方式有關(guān).(3)網(wǎng)絡(luò)看病的評價的分?jǐn)?shù)依次為82,85,85,88,92,由小到大分別記為,從網(wǎng)絡(luò)看病的評價“滿意”的人中隨機(jī)抽取2人,所有可能情況有:;共10種,其中,這2人評分都低于90分的情況有:;共6種,故由古典概型公式得這2人評分都低于90分的概率.【點睛】本題主要考查莖葉圖的應(yīng)用和獨立性檢驗,考查古典概型的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平.21(1)答案見解析(2)【解析】(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以因為,點為中點,所以因為,所以平面因為平面,所以平面平面(2)以點為坐標(biāo)原點,直線分別為軸,軸,過點與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論