版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則( )A在點(diǎn)F的運(yùn)動(dòng)過程中,存在EF/BC1B在點(diǎn)M的運(yùn)
2、動(dòng)過程中,不存在B1MAEC四面體EMAC的體積為定值D四面體FA1C1B的體積不為定值2已知數(shù)列為等差數(shù)列,為其前 項(xiàng)和,則( )ABCD3已知集合,則集合子集的個(gè)數(shù)為( )ABCD4點(diǎn)在所在的平面內(nèi),且,則( )ABCD5設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,則公比( )AB4CD26已知,則的值等于( )ABCD7若,則的虛部是( )ABCD8已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)( )ABCD9公比為2的等比數(shù)列中存在兩項(xiàng),滿足,則的最小值為( )ABCD10已知函數(shù),關(guān)于x的方程f(x)a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )A(0,1)(1,e)BCD(0,
3、1)11已知,則“直線與直線垂直”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件12在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知向量,若滿足,且方向相同,則_14已知圓C:經(jīng)過拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長是_.15我國古代名著張丘建算經(jīng)中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個(gè)四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為_尺,體積是_立方尺(注:
4、1丈=10尺).16一個(gè)算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實(shí)數(shù)的取值范圍18(12分)已知函數(shù),,使得對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.19(12分)為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.()由以上數(shù)據(jù)繪制成22聯(lián)表,是否有
5、95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計(jì)合格不合格總計(jì)()從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個(gè),記來自男生的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.828 20(12分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實(shí)數(shù)恒成立,求的取值范圍.21(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在處的切線方程;(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.22(10分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的
6、圓上,且,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,/而與平面相交,故可知與平面相交,所以不存在EF/BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由/,平面,平面所以/平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由/,平面,平面所以/平面,則點(diǎn)到平面的距離即為點(diǎn)到平面
7、的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.2B【解析】利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項(xiàng)的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時(shí)也考查了等差數(shù)列求和,考查計(jì)算能力,屬于基礎(chǔ)題.3B【解析】首先求出,再根據(jù)含有個(gè)元素的集合有個(gè)子集,計(jì)算可得.【詳解】解:,子集的個(gè)數(shù)為.故選:.【點(diǎn)睛】考查列舉法、描述法的定義,以及交集的運(yùn)算,集合子集個(gè)數(shù)的計(jì)算公式,屬于基礎(chǔ)題4D【解析
8、】確定點(diǎn)為外心,代入化簡得到,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,又,所以因?yàn)?,?lián)立方程可得,因?yàn)?,所以,即故選:【點(diǎn)睛】本題考查了向量模長的計(jì)算,意在考查學(xué)生的計(jì)算能力.5D【解析】由得,又,兩式相除即可解出【詳解】解:由得,又,或,又正項(xiàng)等比數(shù)列得,故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題6A【解析】由余弦公式的二倍角可得,再由誘導(dǎo)公式有,所以【詳解】由余弦公式的二倍角展開式有又故選:A【點(diǎn)睛】本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題7D【解析】通過復(fù)數(shù)的乘除運(yùn)算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳
9、解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8B【解析】求出,把坐標(biāo)代入方程可求得【詳解】據(jù)題意,得,所以,所以故選:B【點(diǎn)睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點(diǎn)可計(jì)算參數(shù)值9D【解析】根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.10D【解析】原問題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a2,令t
10、,則f(x)a記g(t)當(dāng)t2時(shí),g(t)2ln(t)(t)單調(diào)遞減,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有兩個(gè)不等于2的不等根則,記h(t)(t2且t2),則h(t)令(t),則(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+)上單調(diào)遞減由,可得,即a2實(shí)數(shù)a的取值范圍是(2,2)故選:D【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.11B【解析】由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.
11、【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.【點(diǎn)睛】本題主要考查了兩直線的位置關(guān)系,及必要不充分條件的判定,其中解答中利用兩直線的位置關(guān)系求得的值,同時(shí)熟記充要條件的判定方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.12A【解析】根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由向量平行坐標(biāo)表示計(jì)算注意驗(yàn)證兩向量方向是否相同【詳解】,解得或,時(shí),滿
12、足題意,時(shí),方向相反,不合題意,舍去故答案為:1【點(diǎn)睛】本題考查向量平行的坐標(biāo)運(yùn)算,解題時(shí)要注意驗(yàn)證方向相同這個(gè)條件,否則會出錯(cuò)14【解析】求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進(jìn)而求出弦長【詳解】拋物線E: 的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長公式1521 3892 【解析】根據(jù)題意畫出圖形,利用棱錐與棱臺的結(jié)構(gòu)特征求出正四棱臺的高,再計(jì)算它的體積.【詳解】如圖所示:正四棱錐P-
13、A BCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-ABCD,且上底邊長為AB=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點(diǎn)睛】本題考查了棱錐與棱臺的結(jié)構(gòu)特征與應(yīng)用問題,也考查了棱臺的體積計(jì)算問題,屬于中檔題.16【解析】由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運(yùn)行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,此時(shí),滿足條件,退出循環(huán),輸出的值為.故答案為:【點(diǎn)睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識的考查.三、解
14、答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 () .().【解析】()時(shí),根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;()不等式的解集為,等價(jià)于,求出在的最小值即可【詳解】()當(dāng)時(shí),時(shí),不等式化為,解得,即時(shí),不等式化為,不等式恒成立,即時(shí),不等式化為,解得,即綜上所述,不等式的解集為()不等式的解集為 對任意恒成立當(dāng)時(shí),取得最小值為實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題考查了絕對值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對值三角不等式的應(yīng)用問題,屬于常規(guī)題型18(1);(2)證明見解析.【解析】(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(
15、2)由為方程的兩個(gè)實(shí)根,得出,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)椋?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,所以. (2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得, 因此,令,由,得, 則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即, 可知,故,命題得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.19()填表見解析,有95%以上的把握認(rèn)為“性別”與
16、“問卷結(jié)果”有關(guān); ()分布列見解析,【解析】()根據(jù)莖葉圖填寫列聯(lián)表,計(jì)算得到答案.(),計(jì)算,得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.【詳解】()根據(jù)莖葉圖可得:男女總計(jì)合格101626不合格10414總計(jì)202040,故有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān).()從莖葉圖可知,成績在60分以下(不含60分)的男女學(xué)生人數(shù)分別是4人和2人,從中任意選2人,基本事件總數(shù)為,012.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的綜合應(yīng)用能力.20 (1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可試題解析: 整理得解得 解得 ,且無限趨近于4,綜上的取值范圍是21(1).(2)【解析】(1)利用導(dǎo)數(shù)的幾何意義求解即可;(2)利用導(dǎo)數(shù)得出的單調(diào)性以及極值,從而得出的圖象,將函數(shù)的零點(diǎn)問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,由圖,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),切線斜率,又切點(diǎn)切線方程為,即.(2),記,令得;的情況如下表:2+0單調(diào)遞增極大值單調(diào)遞減當(dāng)時(shí),取極大值又時(shí),;時(shí),若沒有零點(diǎn),即的圖像與直線無公共點(diǎn),由圖像知的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廢舊材料銷售框架合同
- 文書模板-裝卸貨高空作業(yè)合同
- 2024年建筑工程分包合同
- 玫瑰的課件教學(xué)課件
- 2024年人工智能教育平臺開發(fā)合同
- 2024醫(yī)療設(shè)備維修公司關(guān)于超聲波機(jī)器保修服務(wù)合同
- 停電停氣應(yīng)急預(yù)案(6篇)
- 2024年建筑工程機(jī)電安裝分包協(xié)議
- 2024年庫房租賃與無人機(jī)測試存放合同
- 2024年專業(yè)咨詢合作協(xié)議
- 菜鳥驛站合伙合同范本
- 汽車保險(xiǎn)與理賠-題庫
- 膿毒血癥指南
- JGJ104-2011建筑工程冬期施工規(guī)程
- DL∕T 1482-2015 架空輸電線路無人機(jī)巡檢作業(yè)技術(shù)導(dǎo)則
- 大數(shù)據(jù)與人工智能營銷智慧樹知到期末考試答案章節(jié)答案2024年南昌大學(xué)
- 8-7懸挑式腳手架驗(yàn)收表
- 2023-2024學(xué)年全國初三上數(shù)學(xué)人教版期中考試試卷(含答案解析)
- 身體的紅綠燈
- 世界的氣溫與降水分布
- 康復(fù)心理學(xué)案例分析報(bào)告
評論
0/150
提交評論