2022屆湖南省各地高考沖刺數(shù)學模擬試題含解析_第1頁
2022屆湖南省各地高考沖刺數(shù)學模擬試題含解析_第2頁
2022屆湖南省各地高考沖刺數(shù)學模擬試題含解析_第3頁
2022屆湖南省各地高考沖刺數(shù)學模擬試題含解析_第4頁
2022屆湖南省各地高考沖刺數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù)的圖象大致為( )ABCD2某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為( )ABCD3某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要

2、求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有( )種.A360B240C150D1204閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是( )A11B1C29D285袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是( )ABCD6如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有( )A2對B3對C4對D5對7 “哥德巴赫猜想”是近代三大數(shù)學難題之一,

3、其內容是:一個大于2的偶數(shù)都可以寫成兩個質數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學家哥德巴赫提出的,我國數(shù)學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質數(shù)的概率為( )ABCD8在復平面內,復數(shù)z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數(shù)是( )ABCD9函數(shù)的部分圖像大致為( )ABCD10拋物線的準線方程是,則實數(shù)( )ABCD11設等比數(shù)列的前項和為,則“”是“”的( )A充分不必要B必要不充分C充要D既不充分也不必要12某幾何體的三視圖如圖所示,則該幾何體的體

4、積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)滿足,當時,若函數(shù)在上有1515個零點,則實數(shù)的范圍為_.14若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_15設,若關于的方程有實數(shù)解,則實數(shù)的取值范圍_16已知向量,且 ,則實數(shù)的值是_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在以為頂點的五面體中,底面為菱形,二面角為直二面角.()證明:;()求二面角的余弦值.18(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中

5、隨機抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為 (單位:元),求的分布列和數(shù)學期望;(3)根據(jù)題中數(shù)據(jù)估算

6、兩公司被抽取員工在該月所得的勞務費.19(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.20(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望21

7、(12分)已知在中,角、的對邊分別為,.(1)若,求的值;(2)若,求的面積.22(10分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】用偶函數(shù)的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為 ,所以函數(shù)為偶函數(shù),圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質,辨析函數(shù)的圖像,排除法,屬于中檔題.2A【解析】由題

8、意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為 故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.3C【解析】可分成兩類,一類是3個新教師與一個

9、老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有共有結對方式6090150種故選:C【點睛】本題考查排列組合的綜合應用解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數(shù)本題中有一個平均分組問題計數(shù)時容易出錯兩組中每組中人數(shù)都是2,因此方法數(shù)為4C【解析】根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結果,屬于基礎題.【詳解】初始值, 第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):

10、,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結構的程序框圖的讀取以及運行結果,屬于基礎題.5C【解析】先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復試驗的公式得到結果【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:【點睛】本題主要考查了次獨立重復試驗中恰好發(fā)生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,

11、利用公式做出結果,屬于中檔題6C【解析】畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作POAD于O,則有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題7A【解析】列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質數(shù)的只

12、有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加數(shù)全為質數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.8A【解析】由復數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數(shù)可求.【詳解】解:復數(shù)z=i(i為虛數(shù)單位)在復平面中對應點Z(0,1),(0,1),將繞原點O逆時針旋轉得到,設(a,b),則,即,又,解得:,對應復數(shù)為.故選:A.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.9A【解析】根據(jù)函數(shù)解析式,

13、可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,為偶函數(shù),圖象關于軸對稱,排除選項,且當時,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.10C【解析】根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.11A【解析】首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列

14、,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關系,屬于基礎題.12D【解析】結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力

15、,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知,在上有3個根,分,四種情況討論的單調性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設,易知在上單調遞減,在,上單調遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調遞增,最多只有1個零點,不滿足題意;綜上,實數(shù)的范圍為.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點,是一道中檔題.14【解析】

16、畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.15【解析】先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù)即可得的最大值為,令,得函數(shù)取得最小值,由有實數(shù)解,進而得實數(shù)的取值范圍【詳解】解:,當時,;當時

17、,;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù)所以的最大值為,令,所以當時,函數(shù)取得最小值,又因為方程有實數(shù)解,那么,即,所以實數(shù)的取值范圍是:故答案為:【點睛】本題考查了函數(shù)的單調性,函數(shù)的最值問題,導數(shù)的應用,屬于中檔題.16【解析】=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2=2(1,2)(x,1)=(2x,3),3(1+2x)4(2x)=1,解得:x=點睛:由向量的數(shù)乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值若=(a1,a2),=(b1,b2),則a1a2+b1b2=1,a1b2a2b1=1 三、解答題:共70分。解答應寫出文字

18、說明、證明過程或演算步驟。17()見解析()【解析】()連接交于點,取中點,連結,證明平面得到答案.()分別以為軸建立如圖所示的空間直角坐標系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】()連接交于點,取中點,連結因為為菱形,所以.因為,所以. 因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以 因為所以是平行四邊形,所以. 所以,所以,所以平面,又平面,所以. ()由()可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標系. 設 設平面的法向量為,由,取.平面的法向量為 . 所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力

19、.18(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù)從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數(shù)學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設乙公司員工1天的投遞件數(shù)為隨機變量,則當時,當時,當時,當

20、時,當時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為(元)由(2)估計乙公司被抽取員工在該月所得的勞務費為(元).【點睛】本題考查頻率分布表的應用,考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題.19(1);(2).【解析】(1)求導得到,討論和兩種情況,計算函數(shù)的單調性,得到,再討論,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調性得到函數(shù)最值,得到答案.【詳解】(1),當時恒成立,所以單調遞增,因為,所以有唯一零點,即符合題意;當時,令,函數(shù)在上單調遞減,在上單調遞增,函數(shù)。(i)當即,

21、所以符合題意,(ii)當即 時,因為,故存在,所以 不符題意(iii)當 時,因為,設,所以,單調遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。當時,恒成立,所以 單調遞增,所以,即符合題意;當 時,恒成立,所以單調遞增,又因為,所以存在,使得,且當時,。即在上單調遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數(shù)的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應用能力.20(1)(2)見解析, 【解析】(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小

22、組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2 人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數(shù)學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數(shù)的可能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論