版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為( )
2、ABCD2過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,若,則的最小值是( )A1B2C3D43已知函數(shù),則函數(shù)的零點所在區(qū)間為( )ABCD4空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是( )A這20天中指數(shù)值的中位數(shù)略高于100B這20天中的中度污染及以上(指數(shù))的天數(shù)占C該市10月的前半個月的空氣質(zhì)量越來越好D總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好5已知非零向量、,若且,則向量在向量方向上的投影為( )ABCD6已知,則等于( )ABCD7雙曲線C:(,)的離心率是3,焦點
3、到漸近線的距離為,則雙曲線C的焦距為( )A3BC6D8在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則( )ABCD9已知,則“mn”是“ml”的A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件10是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限11設(shè),若函數(shù)在區(qū)間上有三個零點,則實數(shù)的取值范圍是( )ABCD12已知集合,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知數(shù)列an的前n項和為Sn,向量(4,n),(Sn,n+3).若,則數(shù)列前2020項和為_14在長方體中,則異面
4、直線與所成角的余弦值為( )ABCD15秦九韶算法是南宋時期數(shù)學(xué)家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為_. 16的展開式中的系數(shù)為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在平面直角坐標系xoy中,曲線C的方程為.以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)寫出曲線C的極坐標方程,并求出直線l與曲線C的交點M,N的極坐標;(2)設(shè)P是橢圓上的動點,求面積的最大值.18(12分)如圖所示,在四棱錐中,底面為正方形,為的中點,為棱上的一點.
5、(1)證明:面面;(2)當為中點時,求二面角余弦值.19(12分)已知函數(shù),(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù)20(12分)已知橢圓的離心率為,點在橢圓上.()求橢圓的標準方程;()設(shè)直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.21(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每 件產(chǎn)品檢驗合格與否相互獨立若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢 驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品
6、檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次 數(shù)為 (1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù)22(10分)在中,、分別是角、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象
7、變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)??疾槎x域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復(fù)習(xí)時要注意基礎(chǔ)知識的理解與落實三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三
8、角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解2C【解析】設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件
9、.3A【解析】首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.4C【解析】結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高
10、于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運用所學(xué)知識對命題進行判斷,本題較為基礎(chǔ).5D【解析】設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算
11、能力,屬于基礎(chǔ)題.6B【解析】由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得 ,又,所以,結(jié)合解得,所以 ,故選B.【點睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.7A【解析】根據(jù)焦點到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點到漸近線的距離為,屬基礎(chǔ)題.8C【解析】利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合
12、終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.9B【解析】構(gòu)造長方體ABCDA1B1C1D1,令平面為面ADD1A1,底面ABCD為,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷【詳解】如圖,取長方體ABCDA1B1C1D1,令平面為面ADD1A1,底面ABCD為,直線=直線。若令A(yù)D1m,ABn,則mn,但m不垂直于若m,由平面平面可知,直線m垂直于平面,所以m垂直
13、于平面內(nèi)的任意一條直線mn是m的必要不充分條件故選:B【點睛】本題考點有兩個:考查了充分必要條件的判斷,在確定好大前提的條件下,從mnm?和mmn?兩方面進行判斷;是空間的垂直關(guān)系,一般利用長方體為載體進行分析10D【解析】求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標,即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.11D【解析】令,可得.在坐標系內(nèi)畫出函數(shù)的圖象(如圖所示).當時,.由得.設(shè)過原點的直線與函數(shù)的圖象切于點,則有,解得.所以當直線與函數(shù)的圖象切時.又當直線經(jīng)過點時,有,解得.結(jié)合圖象可得當直線與函數(shù)的圖
14、象有3個交點時,實數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個零點時,實數(shù)的取值范圍是.選D.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.12C【解析】求出集合,計算出和,即可得出結(jié)論.【詳解】,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分
15、。13【解析】由已知可得4Snn(n+3)0,可得Sn,n1時,a1S11.當n2時,anSnSn1.可得:2().利用裂項求和方法即可得出.【詳解】,4Snn(n+3)0,Sn,n1時,a1S11.當n2時,anSnSn1.,滿足上式,.2().數(shù)列前2020項和為2(1)2(1).故答案為:.【點睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.14C【解析】根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象
16、能力和計算能力.151055【解析】模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿足,滿足,滿足,滿足,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.1628【解析】將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數(shù),關(guān)鍵在于將原表達式化簡將三項的冪的形式轉(zhuǎn)化為可求的二項式的形式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1),;(2).【解析
17、】(1)利用公式即可求得曲線的極坐標方程;聯(lián)立直線和曲線的極坐標方程,即可求得交點坐標;(2)設(shè)出點坐標的參數(shù)形式,將問題轉(zhuǎn)化為求三角函數(shù)最值的問題即可求得.【詳解】(1)曲線的極坐標方程: 聯(lián)立,得,又因為都滿足兩方程,故兩曲線的交點為,.(2)易知,直線. 設(shè)點,則點到直線的距離(其中). 面積的最大值為.【點睛】本題考查極坐標方程和直角坐標方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問題,屬綜合中檔題.18(1)證明見解析;(2).【解析】(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,分別為,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:
18、(1)因為底面為正方形,所以又因為,滿足,所以又,面,面,所以面.又因為面,所以,面面.(2)由(1)知,兩兩垂直,以為坐標原點,以,分別為,軸建系如圖所示,則,,,則,.所以,設(shè)面法向量為,則由得,令得,即;同理,設(shè)面的法向量為,則由得,令得,即,所以,設(shè)二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學(xué)生的運算求解能力,此類問題關(guān)鍵是準確寫出點的坐標,是一道中檔題.19(1);(2)極小值;(3)函數(shù)的零點個數(shù)為【解析】(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當時,以
19、及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以所以,所以曲線在點處的切線為;(2)因為,令,得或列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當時,函數(shù)有極小值;(3)當時,且由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.20();()詳見解析.【解析】()把點代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;()聯(lián)立直線與橢圓方程得到關(guān)于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】()由已知橢圓過點得,又,得,所以,即橢圓方程為.()證明: 由,得,由,得,由韋達定理可得,設(shè)的中點為,得,即,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 核心企業(yè)盡職調(diào)查操作流程
- 人教版教學(xué)課件細胞核的結(jié)構(gòu)和功能
- 煙草制品健康風(fēng)險評估-洞察分析
- 維修系統(tǒng)可持續(xù)性發(fā)展-洞察分析
- 消費者醫(yī)療需求預(yù)測模型-洞察分析
- 醫(yī)務(wù)工作人員態(tài)度不好檢討書范文(15篇)
- 系統(tǒng)生物學(xué)統(tǒng)計分析-洞察分析
- 響應(yīng)式多語言菜單設(shè)計-洞察分析
- 新能源設(shè)備可靠性-洞察分析
- 虛擬現(xiàn)實在文物展示中的應(yīng)用-洞察分析
- 有機更新工作總結(jié)
- eviews操作說明課件
- 教師法律法規(guī)講座課件
- 壓機操作工安全操作規(guī)程范本
- 大學(xué)《營養(yǎng)與膳食》考試復(fù)習(xí)題庫(含答案)
- 戰(zhàn)場偵察課件
- 2023年道德與法治的教學(xué)個人工作總結(jié)
- GB 31241-2022便攜式電子產(chǎn)品用鋰離子電池和電池組安全技術(shù)規(guī)范
- 2024年華潤集團招聘筆試參考題庫含答案解析
- 汽車4S店建設(shè)項目投資計劃書
- 泵更換施工方案
評論
0/150
提交評論