空氣動(dòng)力學(xué)中的動(dòng)名詞解釋_第1頁(yè)
空氣動(dòng)力學(xué)中的動(dòng)名詞解釋_第2頁(yè)
空氣動(dòng)力學(xué)中的動(dòng)名詞解釋_第3頁(yè)
空氣動(dòng)力學(xué)中的動(dòng)名詞解釋_第4頁(yè)
空氣動(dòng)力學(xué)中的動(dòng)名詞解釋_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、Aerodynamics: some nouns1Chapter 1Types of flow:Uniform FlowSteady FlowUnsteady FlowContinuum Versus Free Molecule FlowInviscid Flow: p = 0Viscous Flow: u # 0Incompressible Flow: p =constCompressible Flow: p constSubsonic if Ma 1Gradient of a Scalar Field:The gradient of p, p, at given point in spac

2、e is defined as a vector such that:1. Its magnitude is maximum rate of change of p per unit length of the coordinate space at the given point.2. Its direction is that of maximum rate of change of p at the given point.Divergence of a Vector Field:The time rate of change of the volume will , in genera

3、l , a moving fluid element of fixed mass, per unit volume of that element, is equal to the divergence of V,denoted by V dVx dVy NV V = + +-dx dy dzCurl of a Vector Field:o)is equal to one-half of the curl of V,where the curl of V is denotedbyVXV.Vx V =d dx Vx+Vx V =d dx Vx+Mass Flow:The mass flow th

4、rough A is the mass crossing A per second. Let m denote mass flow.p(Vndt)Am = = pVnABody forces:Gravity, electromagnetic forces, or any other forces which act atdistance on the fluid inside V.Surface forces:Pressure and shear stress acting on the control surface 5.The prefect gas equation of state:3

5、P=p RTChapter 2Pathlines :We trace the path of element A as it moves downstream form point, as given by the dished line. Such a path is defined as the pathline for element A.Streamlines:A streamline is a curve whose tangent at any point is in the direction of the velocity at that point.The differenc

6、e between streamlines and pathlines:In general , streamlines are different from pathlines. You can visualize a pathlines as a time-exposure photograph of a fluid element, whereas a streamline pattern is like a single frame of a motion picture of the flow. In an unsteady flow, the streamline pattern

7、changes; hence, each frame of the motion picture is different.However ,for the case of steady flow, the magnitude and direction of the velocity vectors at all points are fixed, invariant with time. Hence, the pathlines for different fluid elements going through the same . moreover , the pathlines an

8、d streamlines are identical . therefore, in steady flow, there is on distinction between pathlines and streamlines; they are the same curves in space.z/urjSufence SAUVorticity:4We define a new quantity, vorticity , which is simply twice the angular velocity.g 三 2g)g = VIn a velocity field, the curl

9、of the velocity is equal to the vorticity.The above leads to two important definitions:If V x V#0 at every point in a flow ,the flow is called rotational. This implies that the fluid elements have a finite angular velocity.If V x V=0 at every point in a flow, the flow is called irrotational.This imp

10、lies that the fluid elements have no angular velocity; rather,their motion through space is a pure translation.Circulation:The circulation is simply the negative of the line integral of velocity around a closed curve in the flow.r 三 一 3 V - ds*4 *4 - v=M Ll=- IvrVelocity Function:舛 1舛 舛* =況商 Vz=wCha

11、pter 3Bornoullis EquationFor incompressible 、inviscid、steady、rotational flow with no body forces.1 7p + - pV2 = const along a streamlineFor incompressible、inviscid、steady、irrotational flow with no body forces.1 7p + -pV2 = const throughout the flowQuasi-one-dimensional continuity equationFor compres

12、sible flowPiAM = p2A2V2For incompressible flowAV = A2V2Pitot-static probeTotal pressure felt hereStatic pressure/ felt hereTotal pressure felt here16Pi +5pVi = p0Static dynamictotalPressure pressure pressureCondition on velocity for incompressible flowv v = oGoverning equation for irrotational, inco

13、mpressible flow :Laplaces equationv24)= o。2中 ,2中 k砂=Uniform flowA uniform flow is a physically possible incompressible flow and that it is irrotational.In Cartesian coordinates4 = VooX中=VgyIn cylindrical coordinates巾=VqoFCOSGW = Vg rsin0Source flowIn a incompressible flow where all the streamlines a

14、re straight linesemanating from a central point 0. Such a flow is called a source flow.In cylindrical coordinates2ttt4)=京 nrDoublet flowThere is a special, degenerate case of a source-sink pair that leads to a singularity called a doublet.In cylindrical coordinatesk三ZAk cos0 d)=2tt rk si n0 xb =* 2tt rVortex flowConsider a flow where all the streamlines are concentric circles about a given point, as sketched in Figure 3.31. Moreover, let the velocity along any given circular s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論