2022屆興義市高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆興義市高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆興義市高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆興義市高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆興義市高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1寧波古圣王陽明的傳習(xí)錄專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“”表示一根陽線,“”表示一根陰線)從八卦中任取兩卦,這兩卦的六

2、根線中恰有四根陰線的概率為( )ABCD2已知集合,則( )ABCD3中國古典樂器一般按“八音”分類這是我國最早按樂器的制造材料來對樂器進(jìn)行分類的方法,最先見于周禮春官大師,分為“金、石、土、革、絲、木、匏(po)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為( )ABCD4已知為定義在上的偶函數(shù),當(dāng)時,則( )ABCD5我國古代有著輝煌的數(shù)學(xué)研究成果,其中的周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn)這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時

3、期某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )ABCD6已知實數(shù),滿足,則的最大值等于( )A2BC4D87如圖,在中,是上一點,若,則實數(shù)的值為( )ABCD8已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為( )ABCD9已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,則函數(shù)在區(qū)間上零點的個數(shù)為( )A9B10C18D2010在的展開式中,的系數(shù)為( )A-120B120C-15D1511函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為( )ABCD12已知平面

4、向量,滿足,且,則與的夾角為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有_種14一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_種.15已知函數(shù)與的圖象上存在關(guān)于軸對稱的點,則的取值范圍為_16在正方體中,已知點在直線上運(yùn)動,則下列四個命題中:三棱錐的體積不變;當(dāng)為中點時,二面角 的余弦值為;若正方體的棱長為2,則的最小值為;其中說法正確的是_(寫出所有說法正確的編號

5、)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.18(12分)第十三屆全國人大常委會第十一次會議審議的固體廢物污染環(huán)境防治法(修訂草案)中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表分類意識強(qiáng)分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識的強(qiáng)弱與政府宣傳普及工

6、作有關(guān)?說明你的理由;(2)已知在試點前分類意識強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望參考公式:,其中下面的臨界值表僅供參考19(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若,求邊上的高.20(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.21(12分)已知等差數(shù)列an的各項均為正數(shù),Sn為等差數(shù)列an的前n項和,.(1)求數(shù)列an的通項an;(2)設(shè)bnan3n,求數(shù)列bn的前n項和Tn.22(1

7、0分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程及曲線的直角坐標(biāo)方程;(2)設(shè)點,直線與曲線交于兩點,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),

8、(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2A【解析】考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.3B【解析】分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).4D【解析】判斷,利用函數(shù)的奇偶性代入計算得到

9、答案.【詳解】,故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運(yùn)用.5D【解析】利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件

10、有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為故選D【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.6D【解析】畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為

11、.所以的最大值為.故選:D【點睛】本小題主要考查根據(jù)可行域求非線性目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.7C【解析】由題意,可根據(jù)向量運(yùn)算法則得到(1m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,又,所以,(1m),又t,所以,解得m,t,故選C【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.8D【解析】當(dāng)時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,根據(jù)圖像得到答案.【詳解】當(dāng)時,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.

12、,故,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.9B【解析】由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)f (2x),得函數(shù)f(x)圖象關(guān)于x1對稱,f(x)為偶函數(shù),取xx+2,可得f(x+2)f(x)f(x),得函數(shù)周期為2.又當(dāng)x0,1時,f(x)x,且f(x)為偶函數(shù),當(dāng)x1,0時,f(x)x

13、,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.10C【解析】寫出展開式的通項公式,令,即,則可求系數(shù)【詳解】的展開式的通項公式為,令,即時,系數(shù)為故選C【點睛】本題考查二項式展開的通項公式,屬基礎(chǔ)題11A【解析】由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,所以,即,因為

14、函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.12C【解析】根據(jù), 兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且, 所以,所以,所以 ,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應(yīng)的走法種數(shù),然后利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】分三步來考查:從到,則亮

15、亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;從到,由可知有種走法.由分步乘法計數(shù)原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數(shù)原理和組合計數(shù)原理的應(yīng)用,屬于中等題.1411【解析】將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會有相同元素的排列問題,需用到“縮倍法”. 采用分類計數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:

16、,3個,2個:,1個,4個:,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15【解析】兩函數(shù)圖象上存在關(guān)于軸對稱的點的等價命題是方程在區(qū)間上有解,化簡方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對稱的點,則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時, 為減函數(shù),當(dāng)時, 為增函數(shù),故函數(shù)有最小值,又由;比較可得: ,故函數(shù)有最大值,故函數(shù)在區(qū)

17、間上的值域為;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題, 函數(shù)零點問題的拓展. 由于函數(shù)的零點就是方程的根,在研究方程的有關(guān)問題時,可以將方程問題轉(zhuǎn)化為函數(shù)問題解決. 此類問題的切入點是借助函數(shù)的零點,結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.16【解析】,平面,得出上任意一點到平面的距離相等,所以判斷命題;由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題;當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題;過作平面交于點

18、,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當(dāng)點在點時,在一條直線上,取得最小值.可判斷命題.【詳解】,平面,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以正確;在直線上運(yùn)動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以正確;當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為, ,即, ,由圖示可知,二面角 是銳二面角,所以二面角的余弦值為,所以不正確;過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當(dāng)點在點時,在一條直線上,取得最小

19、值. 因為正方體的棱長為2,所以設(shè)點的坐標(biāo)為,所以,所以,又所以,所以,故正確.故答案為:.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對稱的思想,兩點之間線段最短進(jìn)行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)當(dāng)時,;當(dāng)時,.【解析】(1)利用數(shù)列與的關(guān)系,求得;(2)由(1)可得:,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當(dāng)時,當(dāng)時,因為適合上式,所以.(2)由(1)得,設(shè)等比數(shù)列的公比為,則,解得,當(dāng)時,當(dāng)時,.【點睛】本題主要考查數(shù)列與的關(guān)系、等比數(shù)列的通項公式

20、、前項和公式等基礎(chǔ)知識,考查運(yùn)算求解能力.18(1)有的把握認(rèn)為居民分類意識強(qiáng)與政府宣傳普及工作有很大關(guān)系見解析(2)分布列見解析,期望為1【解析】(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為可得列聯(lián)表,然后計算后可得結(jié)論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識強(qiáng)的概率為,可得分類意識強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識強(qiáng)分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認(rèn)為居民分類意識強(qiáng)與政府宣傳普及工作有很大關(guān)系(2)現(xiàn)在從試點前分類意識強(qiáng)的戶居民中,選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,

21、記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,則的分布列為【點睛】本題考查獨立性檢驗,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望考查學(xué)生的數(shù)據(jù)處理能力和運(yùn)算求解能力19(1);(2)【解析】(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,

22、考查學(xué)生的計算求解能力,屬于中檔題.20(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時,恒成立,當(dāng)時,綜上,當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當(dāng)時,在單調(diào)遞增,且,函數(shù)只有一個零點,原方程只有一個解,當(dāng)時,由(1)得在出取得極小值,也是最小值,當(dāng)時,此時函數(shù)只有一個零點,原方程只有一個解,當(dāng)且遞增區(qū)間時,遞減區(qū)間時;,當(dāng),有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.21(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論