版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年陜西省寶雞市某學(xué)校數(shù)學(xué)高職單招測(cè)試試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.若直線x-y+1=0與圓(x-a)2+y2=2有公共點(diǎn),則實(shí)數(shù)a取值范圍是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)
2.如圖所示的程序框圖,當(dāng)輸人x的值為3時(shí),則其輸出的結(jié)果是()A.-1/2B.1C.4/3D.3/4
3.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一個(gè)不等于0D.a,b,c中至少有一個(gè)等于0
4.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項(xiàng)的和S10為()A.30B.40C.50D.60
5.已知角α的終邊經(jīng)過點(diǎn)P(2,-1),則(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
6.設(shè)集合A={x|x≤2或x≥6},B={x||x-1|≤3},則為A∩B()A.[-2,2]B.[-2,4]C.[-4,4]D.[2,4]
7.如果直線3x+y=1與2mx+4y-5=0互相垂直,則m為()A.1
B.
C.
D.-2
8.若a<b<0,則下列結(jié)論正確的是()A.a2<b2
B.a3<b<b3</b
C.|a|<|b|
D.a/b<1
9.A.-1B.-4C.4D.2
10.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
二、填空題(10題)11.
12.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.
13.執(zhí)行如圖所示的流程圖,則輸出的k的值為_______.
14.等差數(shù)列的前n項(xiàng)和_____.
15.在△ABC中,AB=,A=75°,B=45°,則AC=__________.
16.
17.
18.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=32,則a2+2a5十a(chǎn)6=_______.
19.到x軸的距離等于3的點(diǎn)的軌跡方程是_____.
20.如圖是一個(gè)程序框圖,若輸入x的值為8,則輸出的k的值為_________.
三、計(jì)算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
22.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
23.己知直線l與直線y=2x+5平行,且直線l過點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
24.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
25.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
四、證明題(5題)26.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
27.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
28.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
29.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
30.△ABC的三邊分別為a,b,c,為且,求證∠C=
五、簡(jiǎn)答題(5題)31.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長(zhǎng)度.
32.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
33.已知函數(shù).(1)求f(x)的定義域;(2)判斷f(x)的奇偶性,并加以證明;(3)a>1時(shí),判斷函數(shù)的單調(diào)性并加以證明。
34.求證
35.證明:函數(shù)是奇函數(shù)
六、綜合題(5題)36.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
37.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
39.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
40.
參考答案
1.C直線與圓的公共點(diǎn).圓(x-a)2+y2=2的圓心C(a,0)到x-y+1=0
2.B程序框圖的運(yùn)算.當(dāng)輸入的值為3時(shí),第一次循環(huán)時(shí),x=3-3=0,所以x=0≤0成立,所以y=0.50=1.輸出:y=1.故答案為1.
3.D
4.C
5.D三角函數(shù)的化簡(jiǎn)求值.三角函數(shù)的定義.因?yàn)榻莂終邊經(jīng)過點(diǎn)P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
6.A由題可知,B={x|-4≤x≤3},所以A∩B=[-2,2]。
7.C由兩條直線垂直可得:,所以答案為C。
8.B
9.C
10.B
11.
12.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.
13.5程序框圖的運(yùn)算.由題意,執(zhí)行程序框圖,可得k=1,S=1,S=3,k=2不滿足條件S>16,S=8,k=3不滿足條件S>16,S=16,k=4不滿足條件S>16,S=27,k=5滿足條件S>16,退出循環(huán),輸出k的值為5.故答案為:5.
14.2n,
15.2.解三角形的正弦定理.C=180°-75°-45°=60°,由正弦定理得=AB/sinC=AC/sinB解得AC=2.
16.a<c<b
17.
18.16.等差數(shù)列的性質(zhì).由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.
19.y=±3,點(diǎn)到x軸的距離就是其縱坐標(biāo),因此軌跡方程為y=±3。
20.4程序框圖的運(yùn)算.執(zhí)行循環(huán)如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2時(shí);x=2×35+1=71,k=3時(shí);x=2×71+1=143>115,k=4,此時(shí)滿足條件.故輸出k的值為4.
21.
22.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
23.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4
24.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.
26.
27.
∴PD//平面ACE.
28.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
29.
30.
31.∵(1)這條弦與拋物線兩交點(diǎn)
∴
32.(1)(2)
33.(1)-1<x<1(2)奇函數(shù)(3)單調(diào)遞增函數(shù)
34.
35.證明:∵∴則,此函數(shù)為奇函數(shù)
36.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b
=4,此時(shí)r=4,圓的方程為(x-4)2
+(y-4)2=16當(dāng)a=1時(shí),b
=-1,此時(shí)r=1,圓的方程為(x-1)2
+(y+1)2=1
37.
38.解:(1)直線l過A(0,2),B(-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024暑假企業(yè)市場(chǎng)推廣活動(dòng)臨時(shí)促銷員合作協(xié)議3篇
- 2024新版餐飲服務(wù)人員勞動(dòng)協(xié)議樣本版
- 2024擠塑板材料采購合同
- 2024校園垃圾處理與物業(yè)管理服務(wù)合同
- 2024打灰工程勞務(wù)分包協(xié)議范本一
- 2024年電力物資采購供應(yīng)合同
- 2024年項(xiàng)目管理咨詢服務(wù)合同
- 2024年食堂承包及食品安全管理服務(wù)協(xié)議3篇
- 2024年酒店業(yè)標(biāo)準(zhǔn)采購合同模板版B版
- O2O業(yè)務(wù)合作框架合同版B版
- 焊接檢驗(yàn)作業(yè)指導(dǎo)書
- 警務(wù)航空無人機(jī)考試題庫及答案
- 《新時(shí)代勞動(dòng)教育教程與實(shí)踐(第2版)》課程標(biāo)準(zhǔn)
- 法律顧問投標(biāo)書
- 班主任培訓(xùn)簡(jiǎn)報(bào)4篇(一)
- 自愿放棄證明書怎么寫
- 成都市數(shù)學(xué)八年級(jí)上冊(cè)期末試卷含答案
- 危重癥患者轉(zhuǎn)運(yùn)指南-課件
- 2023人才培養(yǎng)方案調(diào)查問卷
- 江蘇省2023年生物小高考試題含答案解析
- 八年級(jí)上冊(cè)地理全冊(cè)知識(shí)點(diǎn)總結(jié)
評(píng)論
0/150
提交評(píng)論