勾股定理教案_第1頁
勾股定理教案_第2頁
勾股定理教案_第3頁
勾股定理教案_第4頁
勾股定理教案_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

本文格式為Word版,下載可任意編輯——勾股定理教案作為一位無私奉獻的人民教師,有必要進行細致的教案準備工作,編寫教案有利于我們確切把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。怎樣寫教案才更能起到其作用呢?美麗的我網(wǎng)我為您帶來了勾股定理教案,希望能夠?qū)π』锇閭兊膶懽饔幸恍﹩l(fā)。

八年級數(shù)學(xué)《勾股定理》教案篇一

教學(xué)目標(biāo):

1、知識目標(biāo):

(1)把握勾股定理;

(2)學(xué)會利用勾股定理進行計算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史。

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

(2)通過問題的解決,提高學(xué)生的運算能力

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。

教學(xué)重點:勾股定理及其應(yīng)用

教學(xué)難點:通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育

教學(xué)用具:直尺,微機

教學(xué)方法:以學(xué)生為主體的探討摸索法

教學(xué)過程:

1、新課背景知識復(fù)習(xí)

(1)三角形的三邊關(guān)系

(2)問題:(投影顯示)

直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特別關(guān)系嗎?

2、定理的獲得

讓學(xué)生用文字語言將上述問題表述出來。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方

強調(diào)說明:

(1)勾――最短的邊、股――較長的直角邊、弦――斜邊

(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)

學(xué)習(xí)完一個重要知識點,給學(xué)生留有一定的時間和機遇,提出問題,然后大家共同分析探討。

3、定理的證明方法

方法一:將四個全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個全等的直角三角形拼成如圖2所示的正方形,

方法三:“總統(tǒng)〞法。如下圖將兩個直角三角形拼成直角梯形

以上證明方法都由學(xué)生先分組探討獲得,教師只做指導(dǎo)。最終總結(jié)說明

4、定理與逆定理的應(yīng)用

例1已知:如圖,在△ABC中,∠ACB=,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長。

解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

∴∠2=∠C

∴CD的長是2.4cm

例2如圖,△ABC中,AB=AC,∠BAC=,D是BC上任一點,

求證:

證法一:過點A作AE⊥BC于E

則在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

證法二:過點D作DE⊥AB于E,DF⊥AC于F

則DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,F(xiàn)D=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

例3設(shè)

求證:

證明:構(gòu)造一個邊長的矩形ABCD,如圖

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EFBF

例4國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某村六組有四個村莊A、B、C、D正好位于一個正方形的四個頂點,現(xiàn)計劃在四個村莊聯(lián)合架設(shè)一條線路,他們設(shè)計了四種架設(shè)方案,如圖實線部分。請你幫助計算一下,哪種架設(shè)方案最省電線。

解:不妨設(shè)正方形的邊長為1,則圖1、圖2中的總線路長分別為

AD+AB+BC=3,AB+BC+CD=3

圖3中,在Rt△DGF中

同理

∴圖3中的路線長為

圖4中,延長EF交BC于H,則FH⊥BC,BH=CH

由∠FBH=及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此圖中總線路的長為4EA+EF=

∵32.8282.732

∴圖4的連接線路最短,即圖4的架設(shè)方案最省電線。

5、課堂小結(jié):

(1)勾股定理的內(nèi)容

(2)勾股定理的作用

已知直角三角形的兩邊求第三邊

已知直角三角形的一邊,求另兩邊的關(guān)系

6、布置作業(yè):

a、書面作業(yè)P130#1、2、3

b、上交作業(yè)P132#1、3

7、板書設(shè)計:

8、探究活動

臺風(fēng)是一種自然災(zāi)難,它以臺風(fēng)中心為圓心在周邊數(shù)十千米范圍內(nèi)形成氣旋風(fēng)暴,有極強的破壞力,如圖,據(jù)氣象觀測,距沿海某城市A的正南方向220千米B處有一臺風(fēng)中心,其中心最大風(fēng)力為12級,每遠離臺風(fēng)中心20千米,風(fēng)力就會減弱一級,該臺風(fēng)中心現(xiàn)正以15千米/時的速度沿北偏東方憧憬C移動,且臺風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達到或走過四級,則稱為受臺風(fēng)影響

(1)該城市是否會受到這交臺風(fēng)的影響?請說明理由

(2)若會受到臺風(fēng)影響,那么臺風(fēng)影響該城市持續(xù)時間有多少?

(3)該城市受到臺風(fēng)影響的最大風(fēng)力為幾級?

八年級數(shù)學(xué)《勾股定理》教案篇二

教學(xué)目標(biāo)

1、知識與技能目標(biāo)

學(xué)會觀測圖形,勇于摸索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

2、過程與方法

(1)經(jīng)歷一般規(guī)律的摸索過程,發(fā)展學(xué)生的抽象思維能力.

(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3、情感態(tài)度與價值觀

(1)通過好玩兒的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.

(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.

教學(xué)重點:

摸索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

教學(xué)難點:

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.

教學(xué)準備:

多媒體

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀測、猜想)

情景:

如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕獲到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

其次環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分探討后,匯總各小組的方案,在全班范圍內(nèi)探討每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近〞就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算.

學(xué)生匯總了四種方案:

(1)(2)(3)(4)

學(xué)生很簡單算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

學(xué)生在情形(3)和(4)的對比中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.

如圖:

(1)中A→B的路線長為:AA’+d;

(2)中A→B的路線長為:AA’+A’BAB;

(3)中A→B的路線長為:AO+OBAB;

(4)中A→B的路線長為:AB.

得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀測.接下來后提問:怎樣計算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

教材23頁

李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

(1)你能替他想方法完成任務(wù)嗎?

(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個長度為20厘米的刻度尺,他能有方法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

第四環(huán)節(jié):穩(wěn)定練習(xí)(10分鐘,學(xué)生獨立完成)

1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00,甲、乙兩人相距多遠?

2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)

內(nèi)容:

1、如何利用勾股定理及逆定理解決最短路程問題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

內(nèi)容:

作業(yè):1.課本習(xí)題1.5第1,2,3題.

要求:A組(學(xué)優(yōu)生):1、2、3

B組(中等生):1、2

C組(后三分之一生):1

板書設(shè)計:

教學(xué)反思:

勾股定理教案篇三

重點、難點分析

本節(jié)內(nèi)容的重點是勾股定理的逆定理及其應(yīng)用。它可用邊的關(guān)系判斷一個三角形是否為直角三角形。為判斷三角形的外形提供了一個有力的依據(jù)。

本節(jié)內(nèi)容的'難點是勾股定理的逆定理的應(yīng)用。在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的外形時而出錯;另外,在解決有關(guān)綜合問題時,要將給的邊的數(shù)量關(guān)系經(jīng)過代數(shù)變化,最終達到一個目標(biāo)式,這種“轉(zhuǎn)化〞對學(xué)生來講也是一個困難的地方。

教法建議:

本節(jié)課教學(xué)模式主要采用“互動式〞教學(xué)模式及“類比〞的教學(xué)方法。通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對象,讓學(xué)生自己提出問題并解決問題。在課堂教學(xué)中營造輕松、活潑的課堂氣氛。通過師生互動、生生互動、學(xué)生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍〞,達到培養(yǎng)學(xué)生思維能力的目的。具體說明如下:

(1)讓學(xué)生主動提出問題

利用類比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書寫出來。這里分別找學(xué)生口述文字;用符號、圖形的形式板書逆命題的內(nèi)容。所有這些都由學(xué)生自己完成,估計學(xué)生不會感到困難。這樣設(shè)計主要是培養(yǎng)學(xué)生擅長提出問題的習(xí)慣及能力。

(2)讓學(xué)生自己解決問題

判斷上述逆命題是否為真命題?對這一問題的解決,學(xué)生會感到有些困難,這里教師可做適當(dāng)?shù)狞c撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和摸索,找到解決問題的思路。

(3)通過實際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識。

教學(xué)目標(biāo):

1、知識目標(biāo):

(1)理解并會證明勾股定理的逆定理;

(2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;

(3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù)。

2、能力目標(biāo):

(1)通過勾股定理與其逆定理的對比,提高學(xué)生的辨析能力;

(2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力。

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

(2)通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征。

教學(xué)重點:勾股定理的逆定理及其應(yīng)用

教學(xué)難點:勾股定理的逆定理及其應(yīng)用

教學(xué)用具:直尺,微機

教學(xué)方法:以學(xué)生為主體的探討摸索法

教學(xué)過程:

1、新課背景知識復(fù)習(xí)(投影)

勾股定理的內(nèi)容

文字表達(投影顯示)

符號表述

圖形(畫在黑板上)

2、逆定理的獲得

(1)讓學(xué)生用文字語言將上述定理的逆命題表述出來

(2)學(xué)生自己證明

逆定理:假如三角形的三邊長有下面關(guān)系:

那么這個三角形是直角三角形

強調(diào)說明:(1)勾股定理及其逆定理的區(qū)別

勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理。

(2)判定直角三角形的方法:

①角為、②垂直、③勾股定理的逆定理

2、定理的應(yīng)用(投影顯示題目上)

例1假如一個三角形的三邊長分別為

則這三角形是直角三角形

例2如圖,已知:CD⊥AB于D,且有

求證:△ACB為直角三角形。

以上例題,分別由學(xué)生先思考,然后回復(fù)。師生共同補充完善。(教師做總結(jié))

4、課堂小結(jié):

(1)逆定理應(yīng)用時易出現(xiàn)的錯誤:分不清哪一條邊作斜邊(最大邊)

(2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運用。

5、布置作業(yè):

a、書面作業(yè)P131#9

b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

求證:△DEF是等腰三角形

《勾股定理》優(yōu)秀教案篇四

一、教學(xué)目標(biāo)

(一)教學(xué)知識點

1、把握勾股定理,了解利用拼圖驗證勾股定理的方法、

2、運用勾股解決一些實際問題、

(二)能力訓(xùn)練要求

1、學(xué)會用拼圖的方法驗證勾股定理,培養(yǎng)學(xué)生的創(chuàng)新能力和解決實際問題的能力、

2、在拼圖過程中,激勵學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識、

(三)情感與價值觀要求

利用拼圖的方法驗證勾股定理,是我國古代數(shù)學(xué)家的一大貢獻、借助對學(xué)生進行愛國主義教育、并在拼圖的過程中獲得學(xué)習(xí)數(shù)學(xué)的開心,提高學(xué)習(xí)數(shù)學(xué)的興趣、

二、教學(xué)重、難點

重點:勾股定理的證明及其應(yīng)用、

難點:勾股定理的證明、

三、教學(xué)方法

教師引導(dǎo)和學(xué)生自主摸索相結(jié)合的方法、

在用拼圖的方法驗證勾股定理的過程中、教師要引導(dǎo)學(xué)生擅長聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學(xué)生自主摸索,大膽地聯(lián)系前面知識,推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實際問題、

四、教具準備

1、每個學(xué)生準備一張硬紙板;

2、投影片三張:

第一張:問題串(記作1、1、2A);

其次張:議一議(記作1、1、2B);

第三張:例題(記作1、1、2C)。

五、教學(xué)過程

Ⅰ、創(chuàng)設(shè)問題情景,引入新課

[師]我們曾學(xué)習(xí)過整式的運算,其中平方差公式(a+b)(a—b)=a2—b2;完全平方公式(ab)2=a22ab+b2是十分重要的內(nèi)容、誰還能記得當(dāng)時這兩個公式是如何推出的?

[生]利用多項式乘以多項式的法則從公式的左邊就可以推出右邊、例如(a+b)(a—b)=a2—ab+ab—b2=a2—b2,所以平方差公式是成立的。

[生]還可以用拼圖的方法來推出、例如:(a+b)2=a2+2ab+b2、我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2、所以(a+b)2=a2+2ab+b2。

《勾股定理》優(yōu)秀教案篇五

課題:

勾股定理

課型:

新授課

課時安排:

1課時

教學(xué)目的:

一、知識與技能目標(biāo)理解和把握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。

二、過程與方法目標(biāo)通過觀測分析,大膽猜想,并摸索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、規(guī)律推理的能力。

三、情感、態(tài)度與價值觀目標(biāo)了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱心;學(xué)生通過自己的努力摸索出結(jié)論獲得成就感,培養(yǎng)摸索熱心和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點:

引導(dǎo)學(xué)生經(jīng)歷摸索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題

教學(xué)難點:

用面積法方法證明勾股定理

課前準備:

多媒體ppt,相關(guān)圖片

教學(xué)過程:

(一)情境導(dǎo)入

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,漂亮的勾股樹,2022年國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。

2、多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,假如梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有方法解決了。

(二)學(xué)習(xí)新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關(guān)系?相傳2500年前,畢達哥拉斯(古希臘有名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時,發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀測圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關(guān)系?通過這個觀測和驗算這個直角三角形外圍的三個正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:假如直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

(三)穩(wěn)定練習(xí)

1、假如一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?

2、解決課程開始時提出的情境問題。

(四)小結(jié)

1、背景知識介紹

①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五〞這一規(guī)律;

②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng)。

2、通過這節(jié)課的學(xué)習(xí),你會寫方程了嗎?你有什么收獲和體會?

(五)作業(yè)練習(xí)18.1中的1、2、3題。板書設(shè)計:勾股定理:假如直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

勾股定理教案篇六

學(xué)習(xí)目標(biāo)

1、通過拼圖,用面積的方法說明勾股定理的正確性。

2、摸索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。

重點難點

或?qū)W習(xí)建議學(xué)習(xí)重點:用面積的方法說明勾股定理的正確。

學(xué)習(xí)難點:勾股定理的應(yīng)用。

學(xué)習(xí)過程教師

二次備課欄

自學(xué)準備與知識導(dǎo)學(xué):

這是1955年希臘為紀念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。

郵票上的圖案是根據(jù)一個有名的數(shù)學(xué)定理設(shè)計的。

學(xué)習(xí)交流與問題研討:

1、摸索

問題:分別以圖中的直角三角形三邊為邊向三角形外

作正方形,小方格的面積看做1,求這三個正方形的面積?

S正方形BCED=S正方形ACFG=S正方形ABHI=

發(fā)現(xiàn):

2、試驗

在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。

請完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系

112

145

41620

91625

發(fā)現(xiàn):

如何用直角三角形的三邊長來表示這個結(jié)論?

這個結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:

如圖:我國古代把直角三角形中,較短的直角邊叫做“勾〞,較長的直角邊叫做“股〞,斜邊叫做“弦〞,所以勾股定理可表示為:弦股還可以表示為:或勾

練習(xí)檢測與拓展延伸:

練習(xí)1、求以下直角三角形中未知邊的長

練習(xí)2、以下各圖中所示的線段的長度或正方形的面積為多少。

(注:以下各圖中的三角形均為直角三角形)

例1、如圖,在四邊形中,∠,∠,,求。

檢測:

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

(2)b=8,c=17,則S△ABC=________。

2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()

A。12cmB。10cmC。8cmD。6cm

4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)

5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?

課后反思或經(jīng)驗總結(jié):

1、什么叫勾股定理;

2、什么樣的三角形的三邊滿足勾股定理;

3、用勾股定理解決一些實際問題。

八年級數(shù)學(xué)《勾股定理》教案篇七

[教學(xué)分析]

勾股定理是透露三角形三條邊數(shù)量關(guān)系的一條十分重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活〞正是這章書所表達的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系對比、摸索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。

本節(jié)教科書從畢達哥拉斯觀測地面發(fā)現(xiàn)勾股定理的傳聞?wù)勂?,讓學(xué)生通過觀測計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式浮現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有好多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。

[教學(xué)目標(biāo)]

一、知識與技能

1、摸索直角三角形三邊關(guān)系,把握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實際問題

3學(xué)會簡單的合情推理與數(shù)學(xué)說理

二、過程與方法

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作摸索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與探討,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。

三、情感與態(tài)度目標(biāo)

通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行摸索與驗證,培養(yǎng)學(xué)生的合作交流意識和摸索精神,以及自主學(xué)習(xí)的能力。

四、重點與難點

1、摸索和證明勾股定理

2熟練運用勾股定理

[教學(xué)過程]

一、創(chuàng)設(shè)情景,透露課題

1、教師展示圖片并介紹第一情景

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度。夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?〞商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤。得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。〞

2、教師展示圖片并介紹其次情景

畢達哥拉斯是古希臘有名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題

1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特別的直角三角形,一般的直角三角形是否也有這樣的特點呢?

3、你能得到什么結(jié)論嗎?

三、得出命題

勾股定理:假如直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

四、勾股定理的證明

趙爽弦圖的證法(圖2)

第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。由于邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

其次種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞〞。

由于邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞〞的面積,所以可以列出等式,化簡得。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高明的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的高傲。

五、應(yīng)用舉例,拓展訓(xùn)練,穩(wěn)定反饋。

勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了大量生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

六、歸納總結(jié)

1、內(nèi)容總結(jié):摸索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀測歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

七、探討交流

讓學(xué)生發(fā)表自己的看法,提出他們模糊不清的概念,給他們一個梳理知識的機遇,通過提醒性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

《勾股定理》優(yōu)秀教案篇八

一、學(xué)生知識狀況分析

本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進行展開、折疊等活動。學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ)。

二、教學(xué)任務(wù)分析

本節(jié)是義務(wù)教育課程標(biāo)準北師大版試驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀測、操作等實踐活動,這些都有助于發(fā)展學(xué)生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論